首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Song Zheng 《Complexity》2015,21(2):333-341
This article investigates the function projective synchronization (FPS) for a class of time‐delay chaotic system via nonlinear adaptive‐impulsive control. To achieve the FPS, suitable nonlinear continuous and impulsive controllers are designed based on adaptive control theory and impulsive control theory. Using the generalized Babarlat's lemma, a general condition is given to ensure the FPS. Here, the time‐delay chaotic system is assumed to satisfy the Lipschitz condition while the Lipschitz constants are estimated by augmented adaptation equations. Numerical simulation results are also presented to verify the effectiveness of the proposed synchronization scheme. © 2014 Wiley Periodicals, Inc. Complexity 21: 333–341, 2015  相似文献   

2.
This paper discusses some basic dynamical properties of the chaotic finance system with parameter switching perturbation, and investigates chaos projective synchronization of the chaotic finance system with the time‐varying delayed feedback controller, which are not fully considered in the existing research. Different from the previous methods, in this paper, the delayed feedback controller is not only time‐varying, but also the time‐varying delay is adaptive. Finally, an illustrate example is provided to show the effectiveness of this method. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
In this article, the mean square exponential synchronization of a class of impulsive coupled neural networks with time‐varying delays and stochastic disturbances is investigated. The information transmission among the systems can be directed and lagged, that is, the coupling matrices are not needed to be symmetrical and there exist interconnection delays. The dynamical behaviors of the networks can be both continuous and discrete. Specially, the time‐varying delays are taken into consideration to describe the impulsive effects of the system. The control objective is that the trajectories of the salve system by designing suitable control schemes track the trajectories of the master system with impulsive effects. Consequently, sufficient criteria for guaranteeing the mean square exponential convergence of the two systems are obtained in view of Lyapunov stability theory, comparison principle, and mathematical induction. Finally, a numerical simulation is presented to show the verification of the main results in this article. © 2015 Wiley Periodicals, Inc. Complexity 21: 190–202, 2016  相似文献   

4.
This article is concerned with the problem of pinning outer synchronization between two complex delayed dynamical networks via adaptive intermittent control. At first, a general model of hybrid‐coupled dynamical network with time‐varying internal delay and time‐varying coupling delay is given. Then, an aperiodically adaptive intermittent pinning‐control strategy is introduced to drive two such delayed dynamical networks to achieve outer synchronization. Some sufficient conditions to guarantee global outer‐synchronization are derived by constructing a novel piecewise Lyapunov function and utilizing stability analytical method. Moreover, a simple pinned‐node selection scheme determining what kinds of nodes should be pinned first is provided. It is noted that the adaptive pinning control type is aperiodically intermittent, where both control period and control width are non‐fixed. Finally, a numerical example is given to illustrate the validity of the theoretical results. © 2016 Wiley Periodicals, Inc. Complexity 21: 593–605, 2016  相似文献   

5.
This study examines finite‐time synchronization for a class of N‐coupled complex partial differential systems (PDSs) with time‐varying delay. The problem of finite‐time synchronization for coupled drive‐response PDSs with time‐varying delay is similarly considered. The synchronization error dynamic of the PDSs is defined in the q‐dimensional spatial domain. We construct a feedback controller to achieve finite‐time synchronization. Sufficient conditions are derived by using the Lyapunov‐Krasoviskii stability approach and inequalities technology to ensure that the proposed networks achieve synchronization in finite time. The proposed systems demonstrate extensive application. Finally, an example is used to verify the theoretical results.  相似文献   

6.
In this paper, by utilizing the Lyapunov functionals, the analysis method and the impulsive control, we analyze the exponential stability of Hopfield neural networks with time‐varying delays. A new criterion on the exponential stabilization by impulses and the exponential stabilization by periodic impulses is gained. We can see that impulses do contribution to the system's exponential stability. Two examples are given to illustrate the effectiveness of our result. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
In this article, we present several results on global exponential stability of a fractional‐order cellular neural network with impulses and with time‐varying and distributed delay. By using the Lyapunov‐like function methods in conjunction with the Razumikhin techniques, we derive sufficient condition for the exponential stability with an exponential convergence rate. The obtained outcomes of our present investigation significantly extend and generalize the corresponding results existing in the current literature. Finally, we give 2 illustrative examples to demonstrate the theoretical findings.  相似文献   

8.
In this work, a new criterion concerning the global exponential stability of impulsive neural networks with time‐varying delays is presented by employing the impulsive delayed differential inequality method. The criterion is independent of the time‐varying delays and does not require the differentiability of delay functions. An example and its simulation showing the effectiveness of the present criterion is given finally. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
In this article, a synchronization problem for complex dynamical networks with additive time‐varying coupling delays via non‐fragile control is investigated. A new class of Lyapunov–Krasovskii functional with triple integral terms is constructed and using reciprocally convex approach, some new delay‐dependent synchronization criteria are derived in terms of linear matrix inequalities (LMIs). When applying Jensen's inequality to partition double integral terms in the derivation of LMI conditions, a new kind of linear combination of positive functions weighted by the inverses of squared convex parameters appears. To handle such a combination, an effective method is introduced by extending the lower bound lemma. Then, a sufficient condition for designing the non‐fragile synchronization controller is introduced. Finally, a numerical example is given to show the advantages of the proposed techniques. © 2014 Wiley Periodicals, Inc. Complexity 21: 296–321, 2015  相似文献   

10.
In this paper, on the basis of the Lyapunov stability theory and finite‐time stability lemma, the finite‐time synchronization problem for memristive neural networks with time‐varying delays is studied by two control methods. First, the discontinuous state‐feedback control rule containing integral part for square sum of the synchronization error and the discontinuous adaptive control rule are designed for realizing synchronization of drive‐response memristive neural networks in finite time, respectively. Then, by using some important inequalities and defining suitable Lyapunov functions, some algebraic sufficient criteria guaranteeing finite‐time synchronization are deduced for drive‐response memristive neural networks in finite time. Furthermore, we give the estimation of the upper bounds of the settling time of finite‐time synchronization. Lastly, the effectiveness of the obtained sufficient criteria guaranteeing finite‐time synchronization is validated by simulation.  相似文献   

11.
In this article, the synchronization problem of uncertain complex networks with multiple coupled time‐varying delays is studied. The synchronization criterion is deduced for complex dynamical networks with multiple different time‐varying coupling delays and uncertainties, based on Lyapunov stability theory and robust adaptive principle. By designing suitable robust adaptive synchronization controllers that have strong robustness against the uncertainties in coupling matrices, the all nodes states of complex networks globally asymptotically synchronize to a desired synchronization state. The numerical simulations are given to show the feasibility and effectiveness of theoretical results. © 2014 Wiley Periodicals, Inc. Complexity 20: 62–73, 2015  相似文献   

12.
This article investigates the adaptive impulsive synchronization of delayed chaotic system with full unknown parameters. Aiming at this problem, we propose a new adaptive strategy, in which both the adaptive–impulsive controller and the parameters adaptive laws are designed via the discrete‐time signals from the drive system. The corresponding theoretical proof is given to guarantee the effectiveness of the proposed strategy. Moreover, the concrete adaptive strategies are achieved for delayed Hopfield neural network, optical Ikeda system and the well‐known delayed Lü chaotic system. As expected, numerical simulations show the effectiveness of the proposed strategy. This method has potential applications in parameters estimation, secure communication, and cryptanalysis when only discrete signals are transmitted in communication channel. © 2014 Wiley Periodicals, Inc. Complexity 21: 43–51, 2016  相似文献   

13.
This paper studies the pinning impulsive synchronization problem for a class of complex dynamical networks with time-varying delay. By applying the Lyapunov stability theory and mathematical analysis technique, sufficient verifiable criterion for the synchronization of delayed complex dynamical networks with small delay is derived analytically. It is shown that synchronization can be achieved by only impulsively controlling a small fraction of network nodes. Moreover, a novel sufficient condition is constructed to relax the restrictions on the size of time-delay and guarantee the synchronization of concerned networks with large delay. Two numerical examples are presented to illustrate the effectiveness of the obtained results.  相似文献   

14.
This paper presents a novel synchronization scheme of multiswitching dual combination synchronization which is first of its kind. Multiswitching dual combination synchronization is achieved for 6 time‐delay chaotic systems. Asymptotically stable synchronization states are established by nonlinear control method and Lyapunov Krasovskii functional. To elaborate the proposed scheme, an example of time‐delay Rossler, Chen, and Shimizu Morioka systems is considered, where time‐delay Rossler system and Chen system are considered as drive systems and time‐delay Shimizu Morioka system is considered as response system. Theoretical analysis and computational results are in excellent agreement.  相似文献   

15.
This article focuses on the problem of Guaranteed cost synchronization of complex networks with uncertainties and time‐Varying delays. Sufficient conditions for the existence of the optimal guaranteed cost control laws are introduced in the light of linear matrix inequalities via the Lyapunov–Krasovskii stability theory. The time‐varying node delays and time‐varying coupling delays are simultaneously regarded in the complex network. The node uncertainties and coupling uncertainties are simultaneously considered as well. Numerical simulations are provided to account for the effectiveness and robustness of the proposed method. The results in this article generalize and improve the corresponding results of the recent works. © 2015 Wiley Periodicals, Inc. Complexity 21: 381–395, 2016  相似文献   

16.
Synchronization of complex networks with time‐varying coupling matrices is studied in this paper. Two kinds of time‐varying coupling are taken into account. One is the time‐varying inner coupling in the node state space and the other is the time‐varying outer coupling in the network topology space. By respectively setting linear controllers and adaptive controllers, time‐varying complex networks can be synchronized to a desired state. Meanwhile, different influences of the control parameters of linear controllers and adaptive controllers on the synchronization have also been investigated. Based on the Lyapunov function theory, we construct appropriate positive‐definite functions, and several sufficient synchronization criteria are obtained. Numerical simulations further illustrate the effectiveness of conclusions. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

17.
This paper is concerned with the problem of μ‐stability of impulsive differential systems with unbounded time‐varying delays and nonlinear perturbations. Some μ‐stability criteria, which depend on the range of distributed delay and the decay rate of discrete delay (not the range), are derived by using Lyapunov–Krasovski functional method. Those criteria are expressed in the form of linear matrix inequalities and they can easily be checked. Two numerical examples are provided to demonstrate the effectiveness of the obtained results. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
In this work, the feedback control method is proposed to control the behaviour of Liu chaotic dynamical system. The controlled system is stable under some conditions on the parameters of the system determined by Routh-Hurwitz criterion. This paper also presents the adaptive modified function projective synchronization (AMFPS) between two identical Liu chaotic dynamical systems. Based on the Lyapunov stability theorem, adaptive control laws are designed to achieving the AMFPS. Finally, some numerical simulations are obtained to validate the proposed methods.  相似文献   

19.
This paper deals with the dynamics of a class of hybrid dynamical systems, which are subject to time‐dependent impulsive perturbations within a finite‐time interval and describe control strategies for integrated pest management. By using suitably defined Lyapunov functionals, sufficient conditions for the finite‐time contractive stability of the null solution are found by means of monotonicity arguments. Finally, a numerical simulation illustrates the theoretical analysis. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
Taiyan Jing  Fangqi Chen 《Complexity》2016,21(Z1):211-219
The problem of finite‐time lag synchronization of delayed neural networks via periodically intermittent control is studied. In two sections, based on the same finite‐time stability theory and using the same sliding mode control, by designing a periodically intermittent feedback controller and adjusting periodically intermittent control strengths with the updated laws, we achieve the finite‐time lag synchronization between two time delayed networks. In addition, we ensure that the trajectory of the error system converges to a chosen sliding surface within finite time and keeps it on forever. Finally, two examples are presented to verify the effectiveness of the analytical results obtained here. © 2015 Wiley Periodicals, Inc. Complexity 21: 211–219, 2016  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号