首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study's aim is to analyze heart rate dynamics in subjects with diabetes by measures of heart rate variability (HRV). The correlation of chaotic global parameters in the two cohorts is able to assess the probability of cardiac failure and other dynamical diseases. Adults (46) were divided into two equal groups. The autonomic evaluation consisted of measuring HRV for 30 min in supine position in absence of any physical, sensory, or pharmacological stimuli. Chaotic global parameters are able to statistically determine which series of electrocardiograph interpeak intervals in short time‐series are diabetic and which are not. The chaotic forward parameter that applies all three parameters is suggested to be the most appropriate and robust algorithm. This was decided after tests for normality; followed by one‐way analysis of variance (ANOVA1); (P < 0.09) and Kruskal–Wallis technique (P < 0.03). Principal component analysis implied two components represent 99.8% of total variance. Therefore, diabetes is a disease which reduces the chaotic response and, as such may be termed a dynamical condition such as are cardiac arrest, asthma, and epilepsy. © 2014 Wiley Periodicals, Inc. Complexity 20: 84–92, 2015  相似文献   

2.
We aimed to evaluate the novel chaotic global techniques of heart rate variability (HRV) analysis during a specific autonomic test, the mental arithmetic overload test. These are spectral detrended fluctuation analysis and spectral multi‐taper method; in addition to spectral entropy. We analyzed 24 healthy male students—all nonsmokers, aged between 18 and 22 years old. HRV was analyzed in the following periods: control protocol—the 10‐min periods before the performance of the task and the 5‐min periods during the performance of the test. Following tests for normality; Kruskal–Wallis technique and principal component analysis—it was decided that this type of mental stimulation did not lead to significant changes in any of the seven combinations of chaotic globals. In conclusion, it was suggested that the time‐series be increased to 1000 RR intervals (at least 20 min of electrocardiographic data) and standard nonlinear methods be introduced in combination with spectral factors as a way of increasing the statistical significance. © 2015 Wiley Periodicals, Inc. Complexity 21: 300–307, 2016  相似文献   

3.
To analyze the complexity of continuous chaotic systems better, the modified multiscale permutation entropy (MMPE) algorithm is proposed. Characteristics and parameter choices of the MMPE algorithm are investigated. The comparative study between MPE and MMPE shows that MMPE has better robustness for identifying different chaotic systems when the scale factor τ takes large values. Compared with MPE, MMPE algorithm is more suitable for analyzing the complexity of time series as it has τ time series. For its application, MMPE algorithm is used to calculate the complexity of multiscroll chaotic systems. Results show that complexity of multiscroll chaotic systems does not increase as scroll number increases. Discussions based on first‐order difference operation present a reasonable explanation on why the complexity does not increase. This complexity analysis method lays a theoretical as well as experimental basis for the applications of multiscroll chaotic systems. © 2014 Wiley Periodicals, Inc. Complexity 21: 52–58, 2016  相似文献   

4.
5.
In this paper we present a chaos-based evolutionary algorithm (EA) for solving nonlinear programming problems named chaotic genetic algorithm (CGA). CGA integrates genetic algorithm (GA) and chaotic local search (CLS) strategy to accelerate the optimum seeking operation and to speed the convergence to the global solution. The integration of global search represented in genetic algorithm and CLS procedures should offer the advantages of both optimization methods while offsetting their disadvantages. By this way, it is intended to enhance the global convergence and to prevent to stick on a local solution. The inherent characteristics of chaos can enhance optimization algorithms by enabling it to escape from local solutions and increase the convergence to reach to the global solution. Twelve chaotic maps have been analyzed in the proposed approach. The simulation results using the set of CEC’2005 show that the application of chaotic mapping may be an effective strategy to improve the performances of EAs.  相似文献   

6.
Chaotic bat algorithm   总被引:1,自引:0,他引:1  
Bat algorithm (BA) is a recent metaheuristic optimization algorithm proposed by Yang. In the present study, we have introduced chaos into BA so as to increase its global search mobility for robust global optimization. Detailed studies have been carried out on benchmark problems with different chaotic maps. Here, four different variants of chaotic BA are introduced and thirteen different chaotic maps are utilized for validating each of these four variants. The results show that some variants of chaotic BAs can clearly outperform the standard BA for these benchmarks.  相似文献   

7.
The goal of this paper is to present a novel chaotic particle swarm optimization (CPSO) algorithm and compares the efficiency of three one-dimensional chaotic maps within symmetrical region for long-term cascaded hydroelectric system scheduling. The introduced chaotic maps improve the global optimal capability of CPSO algorithm. Moreover, a piecewise linear interpolation function is employed to transform all constraints into restrict upriver water level for implementing the maximum of objective function. Numerical results and comparisons demonstrate the effect and speed of different algorithms on a practical hydro-system.  相似文献   

8.
With the increasing needs of global communication, the improvement of secure communication is of vital importance. This study proposes a new scheme for establishing secure communication systems. The new scheme separates white Gaussian noises from the chaotic signals with modified Independent Component Analysis (ICA) and then controls each chaotic signal. This scheme is able to deal with white Gaussian noises in the natural world. However, the signals separated by traditional ICA shows opposite phase and unequal amplitude, making chaos control impossible. Our study proposed a modified ICA, which can calculate accurately the phase and amplitude and ensure control of the chaotic systems. The result indicates that our proposed system can successfully separate white Gaussian noise and stabilize all the chaotic signals.  相似文献   

9.
10.
In this paper, for the parameter identification problem of chaotic system, a chaotic gravitational search algorithm (CGSA) is proposed. At first, an iterative chaotic map with infinite collapses is introduced and chaotic local search (CLS) is designed, then CLS and basic gravitational search are combined in the procedure frame. The CGSA is composed of coarse gravitational search and fine chaotic local search, while chaotic search seeks the optimal solution further, based on the current best solution found by the coarse gravitational search. In order to show the effectiveness of CGSA, both offline and online parameter identifications of Lorenz system are conducted in comparative experiments, while the performances of CGSA are compared with GA, PSO and GSA. The results demonstrate the effectiveness and efficiency of CGSA in solving the problem of parameter identification of chaotic system, and the improvement to GSA has been verified.  相似文献   

11.
This paper addresses the problem of global finite-time synchronization of two different dimensional chaotic systems. Firstly, the definition of global finite-time synchronization of different dimensional chaotic systems are introduced. Based on the finite-time stability methods, the controller is designed such that the chaotic systems are globally synchronized in a finite time. Then, some uncertain parameters are adopted in the chaotic systems, new control law and dynamical parameter estimation are proposed to guarantee that the global finite-time synchronization can be obtained. By considering a dynamical parameter designed in the controller, the adaptive updated controller is also designed to achieve the desired results. At last, the results of two different dimensional chaotic systems are also extended to two different dimensional networked chaotic systems. Finally, three numerical examples are given to verify the validity of the proposed methods.  相似文献   

12.
多频激励软弹簧型Duffing系统中的混沌   总被引:8,自引:0,他引:8  
研究了多频激励下的软弹簧型Duffing系统的混沌动力学,发现混沌产生的根本原因是系统相空间中横截异宿环面的存在.建立了双频激励情况下二维环面上的Poincaré映射、稳定流形和不稳定流形,应用Melnikov方法给出了稳定流形和不稳定流形横截相交的条件,并将此方法推广到激励包含有限多个频率的情形.推广了Melnikov方法在高维系统中的应用,给出了Smale马蹄意义下混沌存在的判据.同时证明,激励频率数目的增加扩大了参数空间上的混沌区域.  相似文献   

13.
It is an important issue to estimate parameters of chaotic system in nonlinear science. In this paper, parameter estimation problem of chaotic system with time-delay is considered. Parameters and time-delay are estimated together by treating time-delay as an additional parameter. The parameter estimation problem is converted to an multi-dimensional optimization problem. A differential evolution (DE) algorithm, which possess a powerful searching capability for finding the solutions for a given optimization problem, is applied to solve this optimization problem. Two illustrative examples are given to verify the effectiveness of the proposed method.  相似文献   

14.
Chaotic harmony search algorithms   总被引:2,自引:0,他引:2  
Harmony Search (HS) is one of the newest and the easiest to code music inspired heuristics for optimization problems. Like the use of chaos in adjusting note parameters such as pitch, dynamic, rhythm, duration, tempo, instrument selection, attack time, etc. in real music and in sound synthesis and timbre construction, this paper proposes new HS algorithms that use chaotic maps for parameter adaptation in order to improve the convergence characteristics and to prevent the HS to get stuck on local solutions. This has been done by using of chaotic number generators each time a random number is needed by the classical HS algorithm. Seven new chaotic HS algorithms have been proposed and different chaotic maps have been analyzed in the benchmark functions. It has been detected that coupling emergent results in different areas, like those of HS and complex dynamics, can improve the quality of results in some optimization problems. It has been also shown that, some of the proposed methods have somewhat increased the solution quality, that is in some cases they improved the global searching capability by escaping the local solutions.  相似文献   

15.
A recently developed metaheuristic optimization algorithm, firefly algorithm (FA), mimics the social behavior of fireflies based on the flashing and attraction characteristics of fireflies. In the present study, we will introduce chaos into FA so as to increase its global search mobility for robust global optimization. Detailed studies are carried out on benchmark problems with different chaotic maps. Here, 12 different chaotic maps are utilized to tune the attractive movement of the fireflies in the algorithm. The results show that some chaotic FAs can clearly outperform the standard FA.  相似文献   

16.
A novel chaotic improved imperialist competitive algorithm (CICA) is presented for global optimization. The ICA is a new meta-heuristic optimization developed based on a socio-politically motivated strategy and contains two main steps: the movement of the colonies and the imperialistic competition. Here different chaotic maps are utilized to improve the movement step of the algorithm. Seven different chaotic maps are investigated and the Logistic and Sinusoidal maps are found as the best choices. Comparing the new algorithm with the other ICA-based methods demonstrates the superiority of the CICA for the benchmark functions.  相似文献   

17.
A finite impulse response neural network, with tap delay lines after each neuron in hidden layer, is used. Genetic algorithm with arithmetic decimal crossover and Roulette selection with normal probability mutation method with linear combination rule is used for optimization of FIR neural network. The method is applied for prediction of several important and benchmarks chaotic time series such as: geomagnetic activity index natural time series and famous Mackey–Glass time series. The results of simulations shows that applying dynamic neural models for modeling of highly nonlinear chaotic systems is more satisfactory with respect to feed forward neural networks. Likewise, global optimization method such as genetic algorithm is more efficient in comparison of nonlinear gradient based optimization methods like momentum term, conjugate gradient.  相似文献   

18.
This paper addresses the problem of projective synchronization of chaotic systems and switched chaotic systems by adaptive control methods. First, a necessary and sufficient condition is proposed to show how many state variables can realize projective synchronization under a linear feedback controller for the chaotic systems. Then, accordingly, a new algorithm is given to select all state variables that can realize projective synchronization. Furthermore, according to the results of the projective synchronization of chaotic systems, the problem of projective synchronization of the switched chaotic systems comprised by the unified chaotic systems is investigated, and an adaptive global linear feedback controller with only one input channel is designed, which can realize the projective synchronization under the arbitrary switching law. It is worth mentioning that the proposed method can also realize complete synchronization of the switched chaotic systems. Finally, the numerical simulation results verify the correctness and effectiveness of the proposed method.  相似文献   

19.
A novel chaotic hash algorithm based on a network structure formed by 16 chaotic maps is proposed. The original message is first padded with zeros to make the length a multiple of four. Then it is divided into a number of blocks each contains 4 bytes. In the hashing process, the blocks are mixed together by the chaotic map network since the initial value and the control parameter of each tent map are dynamically determined by the output of its neighbors. To enhance the confusion and diffusion effect, the cipher block chaining (CBC) mode is adopted in the algorithm. Theoretic analyses and numerical simulations both show that the proposed hash algorithm possesses good statistical properties, strong collision resistance and high flexibility, as required by practical keyed hash functions.  相似文献   

20.
There are more than two dozen variants of particle swarm optimization (PSO) algorithms in the literature. Recently, a new variant, called accelerated PSO (APSO), shows some extra advantages in convergence for global search. In the present study, we will introduce chaos into the APSO in order to further enhance its global search ability. Firstly, detailed studies are carried out on benchmark problems with twelve different chaotic maps to find out the most efficient one. Then the chaotic APSO (CAPSO) will be compared with some other chaotic PSO algorithms presented in the literature. The performance of the CAPSO algorithm is also validated using three engineering problems. The results show that the CAPSO with an appropriate chaotic map can clearly outperform standard APSO, with very good performance in comparison with other algorithms and in application to a complex problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号