首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, a predator–prey system with stocking of prey and harvesting of predator impulsively is studied. Here, the prey population is stocked with a constant quantity and the predator population is harvested at a rate proportional to the species itself at fixed moments. Under some conditions, the existence and global asymptotic stability of the boundary periodic solution are proved, which implies that the system will be extinct; and given some different restrictions, ultimate positive upper and lower bounds of all solutions are obtained, showing the system being permanent. At last, two examples are given to illustrate our results. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
3.
A cubic differential system is proposed, which can be considered a generalization of the predator–prey models, studied recently by many authors. The properties of the equilibrium points, the existence of a uniqueness limit cycle, and the conditions for three limit cycles are investigated. The criterion is easy to apply in applications. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
A predator–prey system with two impulses on the diseased prey is formulated and analyzed for the purpose of integrated pest management. The local and global stability of the susceptible pest‐eradication periodic solution, as well as the permanence of the system, are obtained under the sufficient conditions by means of Floquet's theory for impulsive differential equations. Finally, we interpret our mathematical results. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
A predator–prey model with transmissible disease in the prey species is proposed and analysed. The essential mathematical features are analysed with the help of equilibrium, local and global stability analyses and bifurcation theory. We find four possible equilibria. One is where the populations are extinct. Another is where the disease and predator populations are extinct and we find conditions for global stability of this. A third is where both types of prey exist but no predators. The fourth has all three types of individuals present and we find conditions for limit cycles to arise by Hopf bifurcation. Experimental data simulation and brief discussion conclude the paper. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
We study pattern formations in a predator–prey model with prey‐taxis. It is proved that a branch of nonconstant solutions can bifurcate from the positive equilibrium only when the chemotactic is repulsive. Furthermore, we find the stable bifurcating solutions near the bifurcation point under suitable conditions. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
A diffusive predator–prey model with predator saturation and competition response subject to homogeneous Neumann boundary conditions is considered in this paper. We find that the spatially homogeneous and non‐homogeneous periodic solutions through all parameters of the system are spatially homogeneous. To verify our theoretical results, some numerical simulations are also carried out. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
In this paper, we investigate a predator–prey model with Gompertz growth function and impulsive dispersal of prey between two patches. Using the dynamical properties of single‐species model with impulsive dispersal in two patches and comparison principle of impulsive differential equations, necessary and sufficient criteria on global attractivity of predator‐extinction periodic solution and permanence are established. Finally, a numerical example is given to illustrate the theoretical results. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
This paper considers a periodic predator–prey system where the prey has a life history that takes the prey through two stages: immature and mature. We provide a sufficient and necessary condition to guarantee permanence of the system. It is shown that the system is permanent if and only if the growth of the predator by foraging the prey minus its death rate is positive on average during the period.  相似文献   

10.
This paper is concerned with the existence of traveling waves to a predator–prey model with a spatiotemporal delay. By analyzing the corresponding characteristic equations, the local stability of a positive steady state and each of boundary steady states are established, and the existence of Hopf bifurcation at the positive steady state is also discussed. By constructing a pair of upper–lower solutions and by using the cross‐iteration method as well as the Schauder's fixed‐point theorem, the existence of a traveling wave solution connecting the semi‐trivial steady state and the positive steady state is proved. Numerical simulations are carried out to illustrate the main theoretical results. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
In this paper, a reaction‐diffusion predator–prey system that incorporates the Holling‐type II and a modified Leslie‐Gower functional responses is considered. For ODE, the local stability of the positive equilibrium is investigated and the specific conditions are obtained. For partial differential equation, we consider the dissipation and persistence of solutions, the Turing instability of the equilibrium solutions, and the Hopf bifurcation. By calculating the normal form, we derive the formulae, which can determine the direction and the stability of Hopf bifurcation according to the original parameters of the system. We also use some numerical simulations to illustrate our theoretical results. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
In this paper, we discuss a predator–prey model with the Beddington–DeAngelis functional response of predators and a disease in the prey species. At first we study permanence and global stability of a positive equilibrium for the deterministic version of the model. Then we include a stochastic perturbation of the white noise type. We analyse the influence of this stochastic perturbation on the systems and prove that the positive equilibrium is also globally asymptotically stable in this case. The key point of our analysis is to choose appropriate Lyapunov functionals. We point out the differences between the deterministic and stochastic versions of the model. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
In this work, a modified Holling–Tanner predator–prey model is analyzed, considering important aspects describing the interaction such as the predator growth function is of a logistic type; a weak Allee effect acting in the prey growth function, and the functional response is of hyperbolic type. Making a change of variables and time rescaling, we obtain a polynomial differential equations system topologically equivalent to the original one in which the non‐hyperbolic equilibrium point (0,0) is an attractor for all parameter values. An important consequence of this property is the existence of a separatrix curve dividing the behavior of trajectories in the phase plane, and the system exhibits the bistability phenomenon, because the trajectories can have different ω ? limit sets; as example, the origin (0,0) or a stable limit cycle surrounding an unstable positive equilibrium point. We show that, under certain parameter conditions, a positive equilibrium may undergo saddle‐node, Hopf, and Bogdanov–Takens bifurcations; the existence of a homoclinic curve on the phase plane is also proved, which breaks in an unstable limit cycle. Some simulations to reinforce our results are also shown. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
The consumer–resource relationships are among the most fundamental of all ecological relationships and have been the focus of ecology since its beginnings. Usually are described by nonlinear differential equation systems, putting the emphasis in the effect of antipredator behavior (APB) by the prey; nevertheless, a minor quantity of articles has considered the social behavior of predators. In this work, two predator–prey models derived from the Volterra model are analyzed, in which the equation of predators is modified considering cooperation or collaboration among predators. It is well known that competition among predators produces a stabilizing effect on system describing the model, since there exists a wide set in the parameter space where the system has a unique equilibrium point in the phase plane, which is globally asymptotically stable. Meanwhile, the cooperation can originate more complex and unusual dynamics. As we will show, it is possible to prove that for certain subset of parameter values the predator population sizes tend to infinite when the prey population goes to extinct. This apparently contradicts the idea of a realistic model, when it is implicitly assumed that the predators are specialist, ie, the prey is its unique source of food. However, this could be a desirable effect when the prey constitutes a plague. To reinforce the analytical result, numerical simulations are presented.  相似文献   

15.
In this paper, we study a predator–prey system with an Ivlev-type functional response and impulsive control strategies containing a biological control (periodic impulsive immigration of the predator) and a chemical control (periodic pesticide spraying) with the same period, but not simultaneously. We find conditions for the local stability of the prey-free periodic solution by applying the Floquet theory of an impulsive differential equation and small amplitude perturbation techniques to the system. In addition, it is shown that the system is permanent under some conditions by using comparison results of impulsive differential inequalities. Moreover, we add a forcing term into the prey population’s intrinsic growth rate and find the conditions for the stability and for the permanence of this system.  相似文献   

16.
A delayed predator–prey system with Holling type II functional response and stage structure for both the predator and the prey is investigated. By analyzing the corresponding characteristic equations, the local stability of each feasible equilibrium of the system is discussed, and the existence of a Hopf bifurcation at the coexistence equilibrium is established. By means of the persistence theory for infinite dimensional systems, it is proven that the system is permanent if the coexistence equilibrium exists. By using suitable Lyapunov functions and the LaSalle invariant principle, it is shown that the trivial equilibrium is globally stable when both the predator–extinction equilibrium and the coexistence equilibrium do not exist, and that the predator–extinction equilibrium is globally stable when the coexistence equilibrium does not exist. Further, sufficient conditions are obtained for the global stability of the coexistence equilibrium. Numerical simulations are carried out to illustrate the main theoretical results. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
In this paper, we consider a delayed Hassell–Varley‐type predator–prey model with harvesting on prey. By means of Mawhin's continuation theorem of coincidence degree theory, some new sufficient conditions are obtained for the existence of at least two positive almost periodic solutions for the aforementioned model. To the best of the author's knowledge, so far, the result of this paper is completely new. An example is employed to illustrate the result of this paper. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
In this paper, we introduce a class of predator–prey system with general functional response, whose harvesting policy is modeled by a discontinuous function. Based on the differential inclusions theory, topological degree theory in set‐valued analysis and generalized Lyapunov approach, we analyze the existence, uniqueness and global asymptotic stability of positive periodic solution. In particular, a series of useful criteria on existence, uniqueness and global asymptotic stability of the positive equilibrium point are established for the autonomous system corresponding to the non‐autonomous biological and mathematical model with a discontinuous right‐hand side. Moreover, some new sufficient conditions are provided to guarantee the global convergence in measure of harvesting solution and convergence in finite time of any positive solution for the autonomous discontinuous biological system. The obtained results, which improve and generalize previous works on dynamical behavior in the literature, are of interest for understanding and designing biological system with not only continuous or even Lipschitz continuous but also discontinuous harvesting function. Finally, we give three examples with numerical simulations to show the applicability and effectiveness of our main results. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
In this paper, a ratio‐dependent predator–prey model with stage structure and harvesting is investigated. Mathematical analyses of the model equations with regard to boundedness of solutions, nature of equilibria, permanence and stability are performed. By constructing appropriate Lyapunov functions, a set of easily verifiable sufficient conditions are obtained for the global asymptotic stability of nonnegative equilibria of the model. The existence possibilities of bioeconomic equilibria have been examined. An optimal harvesting policy is also given by using Pontryagin's maximal principle. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
This paper is concerned with a non‐selective harvesting predator–prey model with Hassell–Varley type functional response and impulsive effects. By using the fixed point theory based on monotone operator, some simple conditions are obtained for the existence of at least one positive periodic solution of the model. The existence result of this paper implies that the functional response on prey does not influence the existence of positive periodic solution of the model, which completes some results given in recent years. Further, by applying the comparison theorem in impulsive differential equations and constructing a suitable Lyapunov functional, the permanence and global attractivity of the model are also investigated. The main results in this paper extend, complement, and improve the previously known result. And some examples and numerical simulations are given to illustrate the feasibility and effectiveness of the main results. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号