首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this article, some dynamics of Bloch chaotic system have been studied. Based on Lagrange multiplier method, optimization theory, and the generalized positively definite and radially unbound Lyapunov functions with respect to the parameters of the system, we derive the ultimate bound and a family of mathematical expressions of globally exponentially attractive sets for this system with respect to the parameters of system. The results obtained in this article provides theory basis for chaotic synchronization, chaotic control, Hausdorff dimension, and Lyapunov dimension of chaotic attractors of Bloch chaotic system. © 2016 Wiley Periodicals, Inc. Complexity 21: 201–206, 2016  相似文献   

2.
This article deals with the ultimate bound on the trajectories of the hyperchaos Lorenz system based on Lyapunov stability theory. The innovation of this article lies in that the method of constructing Lyapunov functions applied to the former chaotic systems is not applicable to this hyperchaos system, and moreover, one Lyapunov function can not estimate the bounds of this hyperchaos Lorenz system. We successfully estimate the bounds of this hyperchaos system by constructing three generalized Lyapunov functions step by step. Some computer simulations are also given to show the effectiveness of the proposed scheme. © 2016 Wiley Periodicals, Inc. Complexity 21: 440–445, 2016  相似文献   

3.
In this article, a partial synchronization scheme is proposed based on Lyapunov stability theory to track the signal of the delay hyperchaotic Lü system using the Coullet system based on only one single controller. The proposed tracking control design has two advantages: only one controller is adopted in our approach and it can allow us to drive the hyperchaotic system to a simple chaotic system even with uncertain parameters. Numerical simulation results are given to demonstrate the effectiveness and robustness of the proposed partial synchronization scheme. © 2014 Wiley Periodicals, Inc. Complexity 21: 125–130, 2016  相似文献   

4.
In this article, the underlying dynamics of treating grade distribution is interpreted as a chaotic system instead of a stochastic system for a better understanding. Here, we study the behavior of grade distribution spatial series acquired at the Chadormalu mine in Bafgh city of Iran to distinguish the possible existence of low‐dimensional deterministic chaos. This work applies a variety of nonlinear techniques for detecting the chaotic nature of the grade distribution spatial series and adopts a nonlinear prediction method for predicting the future of the grade distributions. First, the delay time dimension is computed using auto mutual information function to reconstruct the strange attractors. Then, the dimensionality of the trajectories is obtained using Cao's method and, correspondingly, the correlation dimension method is adopted to quantify the embedding dimension. The low embedding dimensions achieved from these methods show the existence of low dimensional chaos in the mining data. Next, the high sensitivity to initial conditions is evaluated using the maximal Lyapunov exponent criterion. Positive Lyapunov exponents obtained demonstrate the exponential divergence of the trajectories and hence the unpredictability of the data. Afterward, the nonlinear surrogate data test is done to further verify the nonlinear structure of the grade distribution series. This analysis provides considerable evidence for the being of low‐dimensional chaotic dynamics underlying the mining spatial series. Lastly, a nonlinear prediction scheme is carried out to predict the grade distribution series. Some computer simulations are presented to illustrate the efficiency of the applied nonlinear tools. © 2016 Wiley Periodicals, Inc. Complexity 21: 355–369, 2016  相似文献   

5.
This article investigates the sliding mode control method for a class of chaotic systems with matched and unmatched uncertain parameters. The proposed reaching law is established to guarantee the existence of the sliding mode around the sliding surface in a finite‐time. Based on the Lyapunov stability theory, the conditions on the state error bound are expressed in the form of linear matrix inequalities. Simulation results for the well‐known Genesio's chaotic system are provided to illustrate the effectiveness of the proposed scheme. © 2014 Wiley Periodicals, Inc. Complexity 21: 14–19, 2016  相似文献   

6.
提出了一个新的混沌系统,该系统含有五个参数,每个状态方程均含有非线性乘积项.通过理论推导,数值仿真,Lyapunov指数、Lyapunov维数、分岔图研究其基本的动力学特性,并分析了改变参数时系统的动力学行为的变化.本文研究了该系统的错位投影同步,设计了非线性控制器,实现了两个初值不同的新系统的错位投影同步.另外,将该系统及错位投影同步方法应用到保密通信中,基于改进的混沌掩盖通讯原理,在发送端使用新系统信号对信息信号进行加密及传送,最后在同步后的接收端不失真地恢复出有用信号.数值仿真表明所设计的新的混沌系统具有复杂的动力学特性,适用于保密通讯.  相似文献   

7.
In this paper, a new Lorenz-like chaotic system is reported. Nonlinear characteristic and basic dynamic properties of the three-dimensional autonomous system are studied by means of nonlinear dynamics theory. The chaotic system is not only demonstrated by theoretical analysis and numerical simulation, such as equilibria stability analysis, Lyapunov-exponent spectra, Lyapunov dimension, bifurcation diagrams, but also implemented via an electronic circuit.  相似文献   

8.
一类统一混沌系统的追踪控制与同步   总被引:10,自引:0,他引:10  
刘杰  陈士华 《数学杂志》2002,22(3):341-344
对一类统一混沌系统进行控制,设计出一种含参控制器,使受控系统追踪任意给定的一维参考信号和三维参考信号,利用Lyapunov方法证明在此控制器作用下该系统按指数速率收敛到参考信号。同时研究了此受控统一混沌系统的自同步及异结构同步问题。利用Chen′s混沌系统进行数值仿真,其结果说明了此控制器设计方法的有效性。  相似文献   

9.
Exact Lyapunov dimension of attractors of many classical chaotic systems (such as Lorenz, Henon, and Chirikov systems) is obtained. While exact Lyapunov dimension for Rössler system is not known, Leonov formulated the following conjecture: Lyapunov dimension of Rössler attractor is equal to local Lyapunov dimension in one of its stationary points. In the present work Leonov’s conjecture on Lyapunov dimension of various Rössler systems with standard parameters is checked numerically.  相似文献   

10.
向小东 《运筹与管理》2007,16(4):127-130
系统复杂性的研究是系统工程的一个热点研究领域。在虚假邻域概念基础上,给出了合适的嵌入参数的确定方法。讨论了分形维与最大Lyapunov指数的计算方法。纽约市场国际原油期货收盘价格时间序列数据的计算表明:这些数据来源于一最大Lyapunov指数值为0.038的混沌吸引子,混沌吸引子分形维为3.625,需用4个变量描述其所在系统的运动规律。此结论为进一步利用混沌理论研究原油期货价格的运动规律、进行相关的投资决策提供了重要信息。  相似文献   

11.
A new butterfly-shaped attractor of Lorenz-like system   总被引:3,自引:0,他引:3  
In this letter a new butterfly-shaped chaotic attractor is reported. Some basic dynamical properties, such as Poincare mapping, Lyapunov exponents, fractal dimension, continuous spectrum and chaotic dynamical behaviors of the new chaotic system are studied. Furthermore, we clarify that the chaotic attractors of the system is a compound structure obtained by merging together two simple attractors through a mirror operation.  相似文献   

12.
We investigate the dynamics of a discrete-time predator-prey system of Leslie type. We show algebraically that the system passes through a flip bifurcation and a Neimark-Sacker bifurcation in the interior of $\R^{2}_+$ using center manifold theorem and bifurcation theory. Numerical simulations are implimented not only to validate theoretical analysis but also exhibits chaotic behaviors, including phase portraits, period-11 orbits, invariant closed circle, and attracting chaotic sets. Furthermore, we compute Lyapunov exponents and fractal dimension numerically to justify the chaotic behaviors of the system. Finally, a state feedback control method is applied to stabilize the chaotic orbits at an unstable fixed point.  相似文献   

13.
In this paper a new three-dimensional chaotic system is introduced. Some basic dynamical properties are analyzed to show chaotic behavior of the presented system. These properties are covered by dissipation of system, instability of equilibria, strange attractor, Lyapunov exponents, fractal dimension and sensitivity to initial conditions. Through altering one of the system parameters, various dynamical behaviors are observed which included chaos, periodic and convergence to an equilibrium point. Eventually, an analog circuit is designed and implemented experimentally to realize the chaotic system.  相似文献   

14.
Based on the Lyapunov stabilization theory and matrix measure, this paper addresses the strategies of speed feedback control of chaotic system to the unsteadily equilibrium points, illustrated by a unified chaotic system and Rössler chaotic system. It is proved that the infimum of speed feedback control coefficient is less than that of displacement feedback control coefficient.  相似文献   

15.
A new chaotic system is found by feedback controlling method in this paper. According to the definition of the generalized Lorenz system, the new chaotic system does not belong to generalized Lorenz systems. We analyze the new system by means of phase portraits, Lyapunov exponents, fractional dimension, bifurcation diagram, and Poincaré map. The particular interest is that this novel system can generate two one‐scroll and one two‐scroll chaotic attractors with the variation of a single parameter. The obtained results show clearly that the system is a new chaotic system and deserves a further detailed investigation. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
In this article, nonlinear dynamical tools such as largest Lyapunov exponents (LE), fractal dimension, correlation dimension, pointwise correlation dimension will be used to analyze electroencephalogram (EEG) data obtained from healthy young subjects with eyes open and eyes closed condition with the view to compare brain complexity under this two condition. Results of similar calculations from some earlier works will be produced for comparison with present results. Also, a brief report on difference of opinion among coworkers regarding such tools will be reported; particularly applicability of LE will be reviewed. The issue of nonlinearity will be addressed by using surrogate data technique. We have extracted another data set that represented chaotic state of the system considered in our earlier work of mathematical modeling of artificial neural network. We further attempt to compare results to find nature of chaos arising from such theoretical models. © 2002 Wiley Periodicals, Inc.  相似文献   

17.
If you are given a simple three-dimensional autonomous quadratic system that has only one stable equilibrium, what would you predict its dynamics to be, stable or periodic? Will it be surprising if you are shown that such a system is actually chaotic? Although chaos theory for three-dimensional autonomous systems has been intensively and extensively studied since the time of Lorenz in the 1960s, and the theory has become quite mature today, it seems that no one would anticipate a possibility of finding a three-dimensional autonomous quadratic chaotic system with only one stable equilibrium. The discovery of the new system, to be reported in this Letter, is indeed striking because for a three-dimensional autonomous quadratic system with a single stable node-focus equilibrium, one typically would anticipate non-chaotic and even asymptotically converging behaviors. Although the equilibrium is changed from an unstable saddle-focus to a stable node-focus, therefore the familiar Ši’lnikov homoclinic criterion is not applicable, it is demonstrated to be chaotic in the sense of having a positive largest Lyapunov exponent, a fractional dimension, a continuous broad frequency spectrum, and a period-doubling route to chaos.  相似文献   

18.
This article focuses on the problem of exponential synchronization for fractional‐order chaotic systems via a nonfragile controller. A criterion for α‐exponential stability of an error system is obtained using the drive‐response synchronization concept together with the Lyapunov stability theory and linear matrix inequalities approach. The uncertainty in system is considered with polytopic form together with structured form. The sufficient conditions are derived for two kinds of structured uncertainty, namely, (1) norm bounded one and (2) linear fractional transformation one. Finally, numerical examples are presented by taking the fractional‐order chaotic Lorenz system and fractional‐order chaotic Newton–Leipnik system to illustrate the applicability of the obtained theory. © 2014 Wiley Periodicals, Inc. Complexity 21: 114–125, 2015  相似文献   

19.
20.
In this article, the dynamical behavior of a generalized Lorenz system is derived based on stability theory of dynamical systems. The meaningful contribution of this article is that the domain of attraction of the new chaotic system is studied in detailed. Finally, numerical simulations are given to verify the effectiveness and correctness of the obtained results. © 2015 Wiley Periodicals, Inc. Complexity 21: 99–105, 2016  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号