首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this article, we consider the problem of robust dissipativity and passivity analysis for a class of general discrete‐time recurrent neural networks (NNs) with time‐varying delays. The NN under consideration is subject to time‐varying and norm bounded parameter uncertainties. By the latest free‐weighting matrix method, an appropriate Lyapunov–Krasovskii functional and using stochastic analysis technique a sufficient condition is established to ensure that the NNs under consideration is strictly ‐dissipative. The derived conditions are presented in terms of linear matrix inequalities. Numerical examples and its simulations are given to demonstrate the effectiveness of the results. © 2014 Wiley Periodicals, Inc. Complexity 21: 47–58, 2016  相似文献   

2.
In this article, the synchronization problem of uncertain complex networks with multiple coupled time‐varying delays is studied. The synchronization criterion is deduced for complex dynamical networks with multiple different time‐varying coupling delays and uncertainties, based on Lyapunov stability theory and robust adaptive principle. By designing suitable robust adaptive synchronization controllers that have strong robustness against the uncertainties in coupling matrices, the all nodes states of complex networks globally asymptotically synchronize to a desired synchronization state. The numerical simulations are given to show the feasibility and effectiveness of theoretical results. © 2014 Wiley Periodicals, Inc. Complexity 20: 62–73, 2015  相似文献   

3.
This article is concerned with the robust stability analysis for Markovian jump systems with mode‐dependent time‐varying delays and randomly occurring uncertainties. Sufficient delay‐dependent stability results are derived with the help of stability theory and linear matrix inequality technique using direct delay‐decomposition approach. Here, the delay interval is decomposed into two subintervals using the tuning parameter η such that , and the sufficient stability conditions are derived for each subintervals. Further, the parameter uncertainties are assumed to be occurring in a random manner. Numerical examples are given to validate the derived theoretical results. © 2015 Wiley Periodicals, Inc. Complexity 21: 50–60, 2016  相似文献   

4.
In this work, a new criterion concerning the global exponential stability of impulsive neural networks with time‐varying delays is presented by employing the impulsive delayed differential inequality method. The criterion is independent of the time‐varying delays and does not require the differentiability of delay functions. An example and its simulation showing the effectiveness of the present criterion is given finally. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
In this paper, the Takagi–Sugeno (T–S) fuzzy model representation is extended to the state estimation of uncertain Markovian jumping Hopfield neural networks with mixed interval time‐varying delays. The main purpose is to estimate the neuron states, through available output measurements such that for all admissible time delays, the dynamics of the estimation error are globally asmptotically stable in the mean square. Based on the Lyapunov–Krasovskii functional and stochastic analysis approach, several delay‐dependent robust state estimators for such T–S fuzzy Markovian jumping Hopfield neural networks can be achieved by solving a linear matrix inequality (LMI), which can be easily facilitated by using some standard numerical packages. Finally a numerical example is provided to demonstrate the effectiveness of the proposed method. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
This paper is concerned with the exponential stability for the discrete‐time bidirectional associative memory neural networks with time‐varying delays. Based on Lyapunov stability theory, some novel delay‐dependent sufficient conditions are obtained to guarantee the globally exponential stability of the addressed neural networks. In order to obtain less conservative results, an improved Lyapunov–Krasovskii functional is constructed and the reciprocally convex approach and free‐weighting matrix method are employed to give the upper bound of the difference of the Lyapunov–Krasovskii functional. Several numerical examples are provided to illustrate the effectiveness of the proposed method. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

7.
This paper investigates the state estimation of neural networks with mixed time‐varying delays and Markovian jumping parameters. By developing a delay decomposition approach, the information of the delayed plant states can be taken into full consideration. On the basis of the new Lyapunov–Krasovskii functional, some inequality techniques, stochastic stability theory and delay‐dependent stability criteria are obtained in terms of linear matrix inequalities. Finally, three numerical examples are given to illustrate the less conservative and effectiveness of our theoretical results. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
This article discusses the issue of robust stability analysis for a class of Markovian jumping stochastic neural networks (NNs) with probabilistic time‐varying delays. The jumping parameters are represented as a continuous‐time discrete‐state Markov chain. Using the stochastic stability theory, properties of Brownian motion, the information of probabilistic time‐varying delay, the generalized Ito's formula, and linear matrix inequality (LMI) technique, some novel sufficient conditions are obtained to guarantee the stochastical stability of the given NNs. In particular, the activation functions considered in this article are reasonably general in view of the fact that they may depend on Markovian jump parameters and they are more general than those usual Lipschitz conditions. The main features of this article are described in the following: first one is that, based on generalized Finsler lemma, some improved delay‐dependent stability criteria are established and the second one is that the nonlinear stochastic perturbation acting on the system satisfies a class of Lipschitz linear growth conditions. By resorting to the Lyapunov–Krasovskii stability theory and the stochastic analysis tools, sufficient stability conditions are established using an efficient LMI approach. Finally, two numerical examples and its simulations are given to demonstrate the usefulness and effectiveness of the proposed results. © 2014 Wiley Periodicals, Inc. Complexity 21: 59–72, 2016  相似文献   

9.
In this article, a synchronization problem for complex dynamical networks with additive time‐varying coupling delays via non‐fragile control is investigated. A new class of Lyapunov–Krasovskii functional with triple integral terms is constructed and using reciprocally convex approach, some new delay‐dependent synchronization criteria are derived in terms of linear matrix inequalities (LMIs). When applying Jensen's inequality to partition double integral terms in the derivation of LMI conditions, a new kind of linear combination of positive functions weighted by the inverses of squared convex parameters appears. To handle such a combination, an effective method is introduced by extending the lower bound lemma. Then, a sufficient condition for designing the non‐fragile synchronization controller is introduced. Finally, a numerical example is given to show the advantages of the proposed techniques. © 2014 Wiley Periodicals, Inc. Complexity 21: 296–321, 2015  相似文献   

10.
In this article, cluster synchronization problem for Lur'e type Takagi–Sugeno (T–S) fuzzy complex networks with probabilistic time‐varying delays is considered. Pinning control strategy is proposed. The probability distribution of the time‐varying delay is considered. In terms of the probability distribution of the delays, a new type of system model with probability‐distribution‐dependent parameter matrices is proposed. Moreover, probabilistic delay is assumed to satisfy certain probability distribution and the probability of the delay takes values in some intervals. By constructing a suitable Lyapunov–Krasovskii functional involving triple integral terms and using Kronecker product with convex combination technique, some sufficient conditions are derived to ensure the cluster synchronization of designed networks such that the linear feedback controller can be used to every cluster. The problem of controller design is converted into solving a series of linear matrix inequalities. The effectiveness of our results is verified through numerical examples and simulations. © 2014 Wiley Periodicals, Inc. Complexity 21: 59–77, 2015  相似文献   

11.
In this article, the problem of global exponential stability in Lagrange sense of neutral type complex‐valued neural networks (CVNNs) with delays is investigated. Two different classes of activation functions are considered, one can be separated into real part and imaginary part, and the other cannot be separated. Based on Lyapunov theory and analytic techniques, delay‐dependent criteria are provided to ascertain the aforementioned CVNNs to be globally exponentially stable GES in Lagrange sense. Moreover, the proposed sufficient conditions are presented in the form of linear matrix inequalities which could be easily checked by Matlab. Finally, two simulation examples are given out to demonstrate the validity of theory results. © 2016 Wiley Periodicals, Inc. Complexity 21: 438–450, 2016  相似文献   

12.
Synchronization of complex networks with time‐varying coupling matrices is studied in this paper. Two kinds of time‐varying coupling are taken into account. One is the time‐varying inner coupling in the node state space and the other is the time‐varying outer coupling in the network topology space. By respectively setting linear controllers and adaptive controllers, time‐varying complex networks can be synchronized to a desired state. Meanwhile, different influences of the control parameters of linear controllers and adaptive controllers on the synchronization have also been investigated. Based on the Lyapunov function theory, we construct appropriate positive‐definite functions, and several sufficient synchronization criteria are obtained. Numerical simulations further illustrate the effectiveness of conclusions. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

13.
This article is concerned with the asymptotic stability analysis of Takagi–Sugeno stochastic fuzzy Cohen–Grossberg neural networks with discrete and distributed time‐varying delays. Based on the Lyapunov functional and linear matrix inequality (LMI) technique, sufficient conditions are derived to ensure the global convergence of the equilibrium point. The proposed conditions can be checked easily by LMI Control Toolbox in Matlab. It has been shown that the results are less restrictive than previously known criteria. They are obtained under mild conditions, assuming neither differentiability nor strict monotonicity for activation function. Numerical examples are given to demonstrate the effectiveness of our results. © 2014 Wiley Periodicals, Inc. Complexity 21: 143–154, 2016  相似文献   

14.
In this article, we study the problem of robust H performance analysis for a class of uncertain Markovian jump systems with mixed overlapping delays. Our aim is to present a new delay‐dependent approach such that the resulting closed‐loop system is stochastically stable and satisfies a prescribed H performance level χ. The jumping parameters are modeled as a continuous‐time, finite‐state Markov chain. By constructing new Lyapunov‐Krasovskii functionals, some novel sufficient conditions are derived to guarantee the stochastic stability of the equilibrium point in the mean‐square. Numerical examples show that the obtained results in this article is less conservative and more effective. The results are also compared with the existing results to show its conservativeness. © 2016 Wiley Periodicals, Inc. Complexity 21: 460–477, 2016  相似文献   

15.
Dissipativity theory is a very important concept in the field of control system. In this paper, we pay attention to the problem of dissipativity analysis of memristive neural networks with time‐varying delay and randomly occurring uncertainties(ROUs). Under the framework of Filippov solution, differential inclusion theory, by employing a proper Lyapunov functional, and some inequality techniques, the dissipativity criteria are obtained in terms of LMIs. It should be noteworthy that the uncertainty terms as well as the ROUs are separately taken into consideration, in which the uncertainties are norm‐bounded and the ROUs obey certain mutually uncorrelated Bernoulli‐distributed white noise sequences. Finally, the effectiveness of the proposed method will be verified via numerical example. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
This study examines finite‐time synchronization for a class of N‐coupled complex partial differential systems (PDSs) with time‐varying delay. The problem of finite‐time synchronization for coupled drive‐response PDSs with time‐varying delay is similarly considered. The synchronization error dynamic of the PDSs is defined in the q‐dimensional spatial domain. We construct a feedback controller to achieve finite‐time synchronization. Sufficient conditions are derived by using the Lyapunov‐Krasoviskii stability approach and inequalities technology to ensure that the proposed networks achieve synchronization in finite time. The proposed systems demonstrate extensive application. Finally, an example is used to verify the theoretical results.  相似文献   

17.
In this article, the mean square exponential synchronization of a class of impulsive coupled neural networks with time‐varying delays and stochastic disturbances is investigated. The information transmission among the systems can be directed and lagged, that is, the coupling matrices are not needed to be symmetrical and there exist interconnection delays. The dynamical behaviors of the networks can be both continuous and discrete. Specially, the time‐varying delays are taken into consideration to describe the impulsive effects of the system. The control objective is that the trajectories of the salve system by designing suitable control schemes track the trajectories of the master system with impulsive effects. Consequently, sufficient criteria for guaranteeing the mean square exponential convergence of the two systems are obtained in view of Lyapunov stability theory, comparison principle, and mathematical induction. Finally, a numerical simulation is presented to show the verification of the main results in this article. © 2015 Wiley Periodicals, Inc. Complexity 21: 190–202, 2016  相似文献   

18.
In this article, a partially delay‐dependent controller is designed to analyze the guaranteed performance analysis of a class of uncertain discrete‐time systems with time‐varying delays. By constructing suitable Lyapunov–Krasovskii Functional (LKF), sufficient conditions are derived to ensure the system to be robustly stochastically stable in mean square sense by using Wirtinger‐based inequality and convex reciprocal lemma. The proper cost function is chosen to guarantee an adequate level of performance. The derived conditions are expressed in terms of linear matrix inequalities (LMIs) which can be easily solved by LMI Toolbox in MATLAB. Further, the advantage of employing the obtained results is illustrated via numerical examples. © 2016 Wiley Periodicals, Inc. Complexity 21: 113–122, 2016  相似文献   

19.
In this paper, on the basis of the Lyapunov stability theory and finite‐time stability lemma, the finite‐time synchronization problem for memristive neural networks with time‐varying delays is studied by two control methods. First, the discontinuous state‐feedback control rule containing integral part for square sum of the synchronization error and the discontinuous adaptive control rule are designed for realizing synchronization of drive‐response memristive neural networks in finite time, respectively. Then, by using some important inequalities and defining suitable Lyapunov functions, some algebraic sufficient criteria guaranteeing finite‐time synchronization are deduced for drive‐response memristive neural networks in finite time. Furthermore, we give the estimation of the upper bounds of the settling time of finite‐time synchronization. Lastly, the effectiveness of the obtained sufficient criteria guaranteeing finite‐time synchronization is validated by simulation.  相似文献   

20.
This paper is concerned with the problem of μ‐stability of impulsive differential systems with unbounded time‐varying delays and nonlinear perturbations. Some μ‐stability criteria, which depend on the range of distributed delay and the decay rate of discrete delay (not the range), are derived by using Lyapunov–Krasovski functional method. Those criteria are expressed in the form of linear matrix inequalities and they can easily be checked. Two numerical examples are provided to demonstrate the effectiveness of the obtained results. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号