首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This article investigates the problem of reliable mixed control for discrete‐time interval type‐2 (IT2) fuzzy model‐based systems via static output‐feedback (SOF) control method. The number of fuzzy rules and the membership functions for the SOF controller are different from those for the plant. A sufficient criterion of reliable stability with mixed performance is derived for the closed‐loop system with sensor failure. The SOF controller is designed for two different cases (known sensor failure case and unknown sensor failure case) to guarantee the reliable stability with mixed performance. Moreover, novel criteria are presented to obtain the optical performance for the closed‐loop system. Finally, an example is used to verify the effectiveness of the proposed design scheme. © 2014 Wiley Periodicals, Inc. Complexity 21: 74–88, 2016  相似文献   

2.
This article investigates the problem of output tracking control for a class of discrete‐time interval type‐2 (IT2) fuzzy systems subject to mismatched premise variables. Based on the IT2 Takagi–Sugeno (T–S) fuzzy model, the criterion to design the desired controller is obtained, which guarantees the closed‐loop system to be asymptotically stable and satisfies the predefined cost function. Moreover, the controller to be designed does not need to share the same premise variables of the system, which enhances the flexibility of controller design and reduces the conservativeness. Finally, two examples are provided to demonstrate the effectiveness of the method proposed in this article. © 2015 Wiley Periodicals, Inc. Complexity 21: 265–276, 2016  相似文献   

3.
This article investigates the control problem for polynomial fuzzy discrete‐time systems. Signal quantization is considered in this article. To deal with this issue, a logarithmic quantizer is adopted to quantize the control signal. First, a novel method is first proposed to model polynomial fuzzy discrete‐time systems and handle the quantized control problem of the systems. Second, based on Lyapunov‐stability theory, sufficient conditions are obtained in terms of sum of squares to guarantee the asymptotical stability of the systems and satisfy a performance. Finally, a simulation example is given to illustrate the effectiveness of the proposed results. © 2014 Wiley Periodicals, Inc. Complexity 21: 325–332, 2015  相似文献   

4.
In this paper, a robust stabilization problem for nonlinearsystems is investigated using static output feedback. Matchedand mismatched uncertainties are considered and their boundingfunctions take general forms. Based on a Lyapunov analysis approachand sliding mode techniques, some conclusions are presented.Then, a robust nonlinear variable structure control scheme issynthesized to stabilize the system globally, and it is notnecessary for the nominal system to be linearizable globally.The conservatism is reduced by using uncertainty bounds in thecontrol design. Finally, a mass–spring system is employedto illustrate the effectiveness of the results.  相似文献   

5.
This article reports on an investigation into robust guaranteed cost control (GCC) for uncertain switched neutral systems (USNSs) with interval time‐varying mixed delays and nonlinear perturbations via dynamic output feedback. Delay‐dependent sufficient conditions are suggested to guarantee the robust exponential stability and to obtain robust GCC for USNSs using the average dwell time approach and the piecewise Lyapunov function technique in terms of a set of linear matrix inequalities. The problem of uncertainty in the system model is solved by deploying the Yakubovich lemma. Lastly, two examples (i.e., a numerical example and the water‐quality dynamic model for the Nile River) are given to verify the efficiency of the propounded theories. © 2016 Wiley Periodicals, Inc. Complexity 21: 555–578, 2016  相似文献   

6.
This article is concerned with the problem of finite‐time synchronization control for a class of discrete‐time nonlinear chaotic systems under unreliable communication links. Our aim is to design a delayed feedback controller such that the resulting synchronization error system is stochastically finite‐time bounded with a guaranteed performance level over a finite time interval. Some sufficient conditions for the solvability of the above problem are established. A delayed feedback control scheme involving constrained information about the past state is presented. Finally, the Fold chaotic system is used to demonstrate the effectiveness of our proposed approach. © 2014 Wiley Periodicals, Inc. Complexity 21: 138–146, 2015  相似文献   

7.
Tieyan Zhang  Yuan Yu  Yan Zhao 《Complexity》2016,21(Z2):289-295
The important issue of reducing the conservatism of feasible stability criteria for continuous‐time Takagi–Sugeno fuzzy systems is studied in this article. In order to obtain more advanced result than previous ones, a new upper bound inequality is proposed and thus the properties of the normalized fuzzy weighting functions' time derivatives can be better used than the previous ones. In particular, the so‐called “redundant terms” considered in previous literature can be converted to “useful terms” which play a positive role in the underlying analysis process. Moreover, some useless additional variables and their derived inequalities are removed for enhancing the efficiency. Finally, an illustrative example is given to show the effectiveness of the proposed method. © 2016 Wiley Periodicals, Inc. Complexity 21: 289–295, 2016  相似文献   

8.
In this paper, an adaptive fuzzy output-feedback control design with output constrained is investigated for a class of switched uncertain nonlinear large-scale systems with unknown dead zones and immeasurable states. Based on dynamic surface backstepping control design technique and incorporated by the average dwell time method and the prescribed performance theory, a new adaptive fuzzy output-feedback control method is developed. It is strictly proved that the resulting closed-loop system is stable in the sense of uniformly ultimately boundedness and both transient and steady-state performances of the outputs are preserved. Comparison simulation studies illustrate the effectiveness of the proposed approach.  相似文献   

9.
10.
11.
This paper investigates the problem of exponential H synchronization of discrete‐time chaotic neural networks with time delays and stochastic perturbations. First, by using the Lyapunov‐Krasovskii (Lyapunov) functional and output feedback controller, we establish the H performance of exponential synchronization in the mean square of master‐slave systems, which is analyzed using a matrix inequality approach. Second, the parameters of a desired output feedback controller can be achieved by solving a linear matrix inequality. Finally, 2 simulated examples are presented to show the effectiveness of the theoretical results.  相似文献   

12.
In many control engineering applications, it is impossible or expensive to measure all the states of the dynamical system and only the system output is available for controller design. In this study, a new dynamic output feedback control algorithm is proposed to stabilize the unstable periodic orbit of chaotic spinning disks with incomplete state information. The proposed control structure is based on the T‐S fuzzy systems. This investigation also introduces a new design procedure to satisfy a constraint on the T‐S fuzzy dynamic output feedback control signal. This procedure is independent of the exact value of initial states. Finally, computer simulations are accomplished to illustrate the performance of the proposed control algorithm. © 2015 Wiley Periodicals, Inc. Complexity 21: 148–159, 2016  相似文献   

13.
This article addresses the dynamic output feedback consensus problem of continuous‐time networked multiagent systems. Both a fixed topology and Markovian switching topologies are considered. The consensus algorithms are on the base of the output information of each agent's itself and its neighbors. Some sufficient conditions for consensus of multiagent systems are obtained in forms of bilinear matrix inequalities. The algorithm based on the homotopy continuation method is given to compute the feasible controller gains. Numerical simulations are given to show the effectiveness of the proposed results. © 2014 Wiley Periodicals, Inc. Complexity 20: 35–42, 2015  相似文献   

14.
A new output feedback adaptive control scheme for multi-input and multi-output (MIMO) nonlinear systems is presented based on the high frequency gain matrix factorization and the backstepping approach with vector form. The only required prior knowledge about the high frequency gain matrix of the linear part of the system is the signs of its leading principal minors. The proposed controller is a dynamic one that only needs the measurement of the system output, and the observer and the filters are introduced in order to construct a virtual estimate of the unmeasured system states. The global stability of the closed-loop systems is guaranteed through this control scheme, and the tracking error converges to zero. Finally, the numerical simulation results illustrate the effectiveness of the proposed scheme.  相似文献   

15.
After introducing the concept of commutativity for continuous‐time linear time‐varying systems, the related literature and the results obtained so far are presented. For a simple introduction of the commutativity of discrete‐time linear time‐varying systems, the problem is formulated for first‐order systems. Finally, explicit necessary and sufficient conditions for the commutativity of first‐order discrete‐time linear time‐varying systems are derived, and their advantageous use in digital system design is illustrated, which are the main objectives of the paper. The results are verified by examples which include an application in amplitude modulation for digital telecommunication.  相似文献   

16.
17.
In this article, an adaptive fuzzy output tracking control approach is proposed for a class of multiple‐input and multiple‐output uncertain switched nonlinear systems with unknown control directions and under arbitrary switchings. In the control design, fuzzy logic systems are used to identify the unknown switched nonlinear systems. A Nussbaum gain function is introduced into the control design and the unknown control direction problem is solved. Under the framework of the backstepping control design, fuzzy adaptive control and common Lyapunov function stability theory, a new adaptive fuzzy output tracking control method is developed. It is proved that the proposed control approach can guarantee that all the signals in the closed‐loop system are bounded and the tracking error remains an adjustable neighborhood of the origin. A numerical example is provided to illustrate the effectiveness of the proposed approach. © 2015 Wiley Periodicals, Inc. Complexity 21: 155–166, 2016  相似文献   

18.
In this paper, smooth output feedback controllers are presented to stabilize a class of planar switched nonlinear systems with asymmetric output constraints (AOCs). A new common barrier Lyapunov function (CBLF) is developed to prevent the switched system from violating AOCs. Combining the adding a power integrator technique (APIT) and the CBLF, state feedback controllers are designed. Then, reduced-order nonlinear observers are constructed and smooth output feedback controllers are proposed to globally stabilize planar switched nonlinear systems under arbitrary switchings. Meanwhile, the system output meets the prescribed AOCs during operation. The method proposed in this paper is a unified tool because it works not only for switched nonlinear systems with asymmetric or symmetric output constrains but also for those without output constraints. Simulations are presented to verify the proposed method.  相似文献   

19.
20.
This article considers the leader‐following consensus problem of heterogeneous multi‐agent systems. The proposed multi‐agent system is consisted of heterogeneous agents where each agents have their own nonlinear dynamic behavior. To overcome difficulty from heterogeneous nonlinear intrinsic dynamics of agents, a fuzzy disturbance observer is adopted. In addition, based on the Lyapunov stability theory, an adaptive control method is used to compensate the observation error caused by the difference between the unknown factor and estimated values. Two numerical examples are given to illustrate the effectiveness of the proposed method. © 2013 Wiley Periodicals, Inc. Complexity 19: 20–31, 2014  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号