首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This article proposes a novel adaptive sliding mode control (SMC) scheme to realize the problem of robust tracking and model following for a class of uncertain time‐delay systems with input nonlinearity. It is shown that the proposed robust tracking controller guarantees the stability of overall closed‐loop system and achieves zero‐tracking error in the presence of input nonlinearity, time‐delays, time‐varying parameter uncertainties and external disturbances. The selection of sliding surface and the existence of sliding mode are two important issues, which have been addressed. This scheme assures robustness against input nonlinearity, time‐delays, parameter uncertainties, and external disturbances. Moreover, the knowledge of the upper bound of uncertainties is not required and chattering phenomenon is eliminated. Both theoretical analysis and illustrative examples demonstrate the validity of the proposed scheme. © 2014 Wiley Periodicals, Inc. Complexity 21: 66–73, 2015  相似文献   

2.
This article presents an adaptive sliding mode control (SMC) scheme for the stabilization problem of uncertain time‐delay chaotic systems with input dead‐zone nonlinearity. The algorithm is based on SMC, adaptive control, and linear matrix inequality technique. Using Lyapunov stability theorem, the proposed control scheme guarantees the stability of overall closed‐loop uncertain time‐delay chaotic system with input dead‐zone nonlinearity. It is shown that the state trajectories converge to zero asymptotically in the presence of input dead‐zone nonlinearity, time‐delays, nonlinear real‐valued functions, parameter uncertainties, and external disturbances simultaneously. The selection of sliding surface and the design of control law are two important issues, which have been addressed. Moreover, the knowledge of upper bound of uncertainties is not required. The reaching phase and chattering phenomenon are eliminated. Simulation results demonstrate the effectiveness and robustness of the proposed scheme. © 2014 Wiley Periodicals, Inc. Complexity 21: 13–20, 2016  相似文献   

3.
This paper investigates the trajectory tracking control of the networked multimanipulator with the existence of time‐varying delays and uncertainties in both kinematics and dynamics. To address time‐varying delays in the communication links, a novel control scheme is established by the design of delay–rate‐dependent networking mutual coupling strengths. Besides, to handle the kinematic and dynamic uncertainties, an adaptive controller is designed. The proposed control scheme guarantees that the networked robotic system can track a commonly desired trajectory cooperatively with the strongly connected communication graph, uncertainties, and time‐varying communicating delays. A Lyapunov–Krasovskii functional is employed to rigorously prove the asymptotic convergence of both tracking errors and synchronization errors. The simulation results are provided to verify the effectiveness of the control method proposed by this paper.  相似文献   

4.
This article presents a new design of robust finite‐time controller which replaces the traditional automatic voltage regulator for excitation control of the third‐order model synchronous generator connected to an infinite bus. The effects of system uncertainties and external noises are fully taken into account. Then a single input robust controller is proposed to regulate the system states to reach the origin in a given finite time. The designed robust finite‐time excitation controller can refine the system behaviors in convergence and robustness against model uncertainties and external disturbances. The robustness and finite‐time stability of the closed‐loop system are analytically proved using the finite‐time control idea and Lyapunov stability theorem. The suitability and robustness of the designed controller are shown in contrast with two other strong nonlinear control strategies. The main advantages of the proposed controller are as follows: a) robustness against system uncertainties and external noises; b) convergence to the equilibrium point in a given finite time; and c) the use of a single control input. © 2015 Wiley Periodicals, Inc. Complexity 21: 203–213, 2016  相似文献   

5.
This article investigates the chaos control problem for the fractional‐order chaotic systems containing unknown structure and input nonlinearities. Two types of nonlinearity in the control input are considered. In the first case, a general continuous nonlinearity input is supposed in the controller, and in the second case, the unknown dead‐zone input is included. In each case, a proper switching adaptive controller is introduced to stabilize the fractional‐order chaotic system in the presence of unknown parameters and uncertainties. The control methods are designed based on the boundedness property of the chaotic system's states, where, in the proposed methods the nonlinear/linear dynamic terms of the fractional‐order chaotic systems are assumed to be fully unknown. The analytical results of the mentioned techniques are proved by the stability analysis theorem of fractional‐order systems and the adaptive control method. In addition, as an application of the proposed methods, single input adaptive controllers are adopted for control of a class of three‐dimensional nonlinear fractional‐order chaotic systems. And finally, some numerical examples illustrate the correctness of the analytical results. © 2014 Wiley Periodicals, Inc. Complexity 21: 211–223, 2015  相似文献   

6.
Nan Wang  Jinyong Yu  Weiyang Lin 《Complexity》2016,21(Z2):191-200
This article deals with the positioning control problem via the output feedback scheme for a linear actuator with nonlinear disturbances. In this study, the proposed controller accounts for not only the nonlinear friction, force ripple, and external disturbance but also the input saturation problem. In detail, the energy consumption for conquering friction and disturbance rejection is estimated and used as compensation based on the hybrid controller including and sliding‐mode‐based adaptive algorithms, which ensures the tracking performance and robustness of electromechanical servo system. Moreover, to confront the input saturation, a saturation observer and an anti‐windup controller are designed. The global robustness of the controller is guaranteed by an output feedback robust law. Theoretically, the designed controller can guarantee a favorable tracking performance in the presence of various disturbance forces and input saturation, which is essential for high accuracy motion plant in industrial application. The simulation results verify the robustness and effectiveness for the motion system with the proposed control strategy under various operation conditions. © 2016 Wiley Periodicals, Inc. Complexity 21: 191–200, 2016  相似文献   

7.
This article addresses the synchronization of nonlinear master–slave systems under input time‐delay and slope‐restricted input nonlinearity. The input nonlinearity is transformed into linear time‐varying parameters belonging to a known range. Using the linear parameter varying (LPV) approach, applying the information of delay range, using the triple‐integral‐based Lyapunov–Krasovskii functional and utilizing the bounds on nonlinear dynamics of the nonlinear systems, nonlinear matrix inequalities for designing a simple delay‐range‐dependent state feedback control for synchronization of the drive and response systems is derived. The proposed controller synthesis condition is transformed into an equivalent but relatively simple criterion that can be solved through a recursive linear matrix inequality based approach by application of cone complementary linearization algorithm. In contrast to the conventional adaptive approaches, the proposed approach is simple in design and implementation and is capable to synchronize nonlinear oscillators under input delays in addition to the slope‐restricted nonlinearity. Further, time‐delays are treated using an advanced delay‐range‐dependent approach, which is adequate to synchronize nonlinear systems with either higher or lower delays. Furthermore, the resultant approach is applicable to the input nonlinearity, without using any adaptation law, owing to the utilization of LPV approach. A numerical example is worked out, demonstrating effectiveness of the proposed methodology in synchronization of two chaotic gyro systems. © 2015 Wiley Periodicals, Inc. Complexity 21: 220–233, 2016  相似文献   

8.
This paper addresses chaos anti-synchronization of uncertain unified chaotic systems with dead-zone input nonlinearity. Using the sliding mode control technique and Lyapunov stability theory, a proportional–integral (PI) switching surface is proposed to ensure the stability of the closed-loop error system in sliding mode. Then a sliding mode controller (SMC) is proposed to guarantee the hitting of the switching surface even with uncertainties and the control input containing dead-zone nonlinearity. Some simulation results are included to demonstrate the effectiveness and feasibility of the proposed synchronization scheme.  相似文献   

9.
A new problem of adaptive type-2 fuzzy fractional control with pseudo-state observer for commensurate fractional order dynamic systems with dead-zone input nonlinearity is considered in presence of unmatched disturbances and model uncertainties; the control scheme is constructed by using the backstepping and adaptive technique. To avoid the complexity of backstepping design process, the dynamic surface control is used. Also, Interval type-2 Fuzzy logic systems (IT2FLS) are used to approximate the unknown nonlinear functions. By using the fractional adaptive backstepping, fractional control laws are constructed; this method is applied to a class of uncertain fractional-order nonlinear systems. In order to better control performance in reducing tracking error, the PSO algorithm is utilized for tuning the controller parameters. Stability of the system is proven by the Mittag–Leffler method. It is shown that the proposed controller guarantees the boundedness property for the system and also the tracking error can converge to a small neighborhood of the origin. The efficiency of the proposed method is illustrated with simulation examples.  相似文献   

10.
Saleh Mobayen 《Complexity》2015,21(2):239-244
This article investigates a novel fast terminal sliding mode control approach combined with global sliding surface structure for the robust tracking control of nonlinear second‐order systems with time‐varying uncertainties. The suggested control technique is formulated based on the Lyapunov stability theory and guarantees the existence of the sliding mode around the sliding surface in a finite time. Using the new form of switching surface, the reaching phase elimination and the robustness improvement of the whole system are satisfied. Simulation results demonstrate the efficiency of the proposed technique. © 2014 Wiley Periodicals, Inc. Complexity 21: 239–244, 2015  相似文献   

11.
In this paper, the problems of robust exponential generalized and robust exponential Q-S chaos synchronization are investigated between different dimensional chaotic systems. We consider the more practical and realistic cases when unknown time varying parameters with uncertainties, environmental disturbances, and nonlinearity of input control signals are present. The adaptive technique is employed to design the appropriate controllers and the validity of the proposed controllers are proved using Lyapunov stability theorem. Furthermore, numerical simulations are performed to show the efficiency of the presented scheme.  相似文献   

12.
研究了航天器编队飞行多目标姿态跟踪鲁棒控制问题.主航天器装有一个快速机动天线和一个星载相机.考虑相机对地面目标跟踪,同时考虑天线与从航天器通信的空间任务.通过引入角速度约束和姿态角约束,分别推导了相机和天线的参考姿态角、角速度和角加速度.提出期望逆系统的概念,将三维空间姿态跟踪问题转化为调节问题,简化了控制器的设计.考虑存在参数摄动和外部干扰力矩的情况,基于期望逆系统和滑模控制,设计了鲁棒姿态跟踪控制器,并利用Liapunov稳定性理论证明了控制系统的渐近稳定性.以两航天器编队飞行多目标跟踪为例进行数值仿真,结果表明所设计的控制器具有良好的鲁棒性和优越的跟踪性能.  相似文献   

13.
This paper considers the problems of the robust stability analysis and H controller synthesis for uncertain discrete‐time switched systems with interval time‐varying delay and nonlinear disturbances. Based on the system transformation and by introducing a switched Lyapunov‐Krasovskii functional, the novel sufficient conditions, which guarantee that the uncertain discrete‐time switched system is robust asymptotically stable are obtained in terms of linear matrix inequalities. Then, the robust H control synthesis via switched state feedback is studied for a class of discrete‐time switched systems with uncertainties and nonlinear disturbances. We designed a switched state feedback controller to stabilize asymptotically discrete‐time switched systems with interval time‐varying delay and H disturbance attenuation level based on matrix inequality conditions. Examples are provided to illustrate the advantage and effectiveness of the proposed method.  相似文献   

14.
This work presents an adaptive sliding mode control scheme to elucidate the robust chaos suppression control of non-autonomous chaotic systems. The proposed control scheme utilizes extended systems to ensure that continuous control input is obtained in order to avoid chattering phenomenon as frequently in conventional sliding mode control systems. A switching surface is adopted to ensure the relative ease in stabilizing the extended error dynamics in the sliding mode. An adaptive sliding mode controller (ASMC) is then derived to guarantee the occurrence of the sliding motion, even when the chaotic horizontal platform system (HPS) is undergoing parametric uncertainties. Based on Lyapunov stability theorem, control laws are derived. In addition to guaranteeing that uncertain horizontal platform chaotic systems can be stabilized to a steady state, the proposed control scheme ensures asymptotically tracking of any desired trajectory. Furthermore, the numerical simulations verify the accuracy of the proposed control scheme, which is applicable to another chaotic system based on the same design scheme.  相似文献   

15.
This article deals with the problem of nonfragile H output tracking control for a kind of singular Markovian jump systems with time‐varying delays, parameter uncertainties, network‐induced signal transmission delays, and data packet dropouts. The main objective is to design mode‐dependent state‐feedback controller under controller gain perturbations and bounded modes transition rates such that the output of the closed‐loop networked control system tracks the output of a given reference system with the required H output tracking performance. By constructing a more multiple stochastic Lyapunov–Krasovskii functional, the novel mode‐dependent and delay‐dependent conditions are obtained to guarantee the augmented output tracking closed‐loop system is not only stochastically admissible but also satisfies a prescribed H‐norm level for all signal transmission delays, data packet dropouts, and admissible uncertainties. Then, the desired state‐feedback controller parameters are determined by solving a set of strict linear matrix inequalities. A simple production system example and two numerical examples are used to verify the effectiveness and usefulness of the proposed methods. © 2015 Wiley Periodicals, Inc. Complexity 21: 396–411, 2016  相似文献   

16.
This article investigates the robust reliable control problem for a class of uncertain switched neutral systems with mixed interval time‐varying delays. The system under study involves state time‐delay, parameter uncertainties and possible actuator failures. In particular, the parameter uncertainties is assumed to satisfy linear fractional transformation formulation and the involved state delay are assumed to be randomly time varying which is modeled by introducing Bernoulli distributed sequences. The main objective of this article is to obtain robust reliable feedback controller design to achieve the exponential stability of the closed‐loop system in the presence of for all admissible parameter uncertainties. The proposed results not only applicable for the normal operating case of the system, but also in the presence of certain actuator failures. By constructing an appropriate Lyapunov–Krasovskii functional, a new set of criteria is derived for ensuring the robust exponential stability of the closed‐loop switched neutral system. More precisely, zero inequality approach, Wirtinger's based inequality, convex combination technique and average dwell time approach are used to simplify the derivation in the main results. Finally, numerical examples with simulation result are given to illustrate the effectiveness and applicability of the proposed design approach. © 2015 Wiley Periodicals, Inc. Complexity 21: 224–237, 2016  相似文献   

17.
To solve disturbances, nonlinearity, nonholonomic constraints and dynamic coupling between the platform and its mounted robot manipulator, an adaptive sliding mode controller based on the backstepping method applied to the robust trajectory tracking of the wheeled mobile manipulator is described in this article. The control algorithm rests on adopting the backstepping method to improve the global ultimate asymptotic stability and applying the sliding mode control to obtain high response and invariability to uncertainties. According to the Lyapunov stability criterion, the wheeled mobile manipulator is divided into several stabilizing subsystems, and an adaptive law is designed to estimate the general nondeterminacy, which make the controller be capable to drive the trajectory tracking error of the mobile manipulator to converge to zero even in the presence of perturbations and mathematical model errors. We compare our controller with the robust neural network based algorithm in nonholonomic constraints and uncertainties, and simulation results prove the effectivity and feasibility of the proposed method in the trajectory tracking of the wheeled mobile manipulator.  相似文献   

18.
This article examines the reliable L2 – L control design problem for a class of continuous‐time linear systems subject to external disturbances and mixed actuator failures via input delay approach. Also, due to the occurrence of nonlinear circumstances in the control input, a more generalized and practical actuator fault model containing both linear and nonlinear terms is constructed to the addressed control system. Our attention is focused on the design of the robust state feedback reliable sampled‐data controller that guarantees the robust asymptotic stability of the resulting closed‐loop system with an L2 – L prescribed performance level γ > 0, for all the possible actuator failure cases. For this purpose, by constructing an appropriate Lyapunov–Krasovskii functional (LKF) and utilizing few integral inequality techniques, some novel sufficient stabilization conditions in terms of linear matrix inequalities (LMIs) are established for the considered system. Moreover, the established stabilizability conditions pave the way for designing the robust reliable sampled‐data controller as the solution to a set of LMIs. Finally, as an example, a wheeled mobile robot trailer model is considered to illustrate the effectiveness of the proposed control design scheme. © 2016 Wiley Periodicals, Inc. Complexity 21: 309–319, 2016  相似文献   

19.
In this article, the problem of reliable gain‐scheduled H performance optimization and controller design for a class of discrete‐time networked control system (NCS) is discussed. The main aim of this work is to design a gain‐scheduled controller, which consists of not only the constant parameters but also the time‐varying parameter such that NCS is asymptotically stable. In particular, the proposed gain‐scheduled controller is not only based on fixed gains but also the measured time‐varying parameter. Further, the result is extended to obtain a robust reliable gain‐scheduled H control by considering both unknown disturbances and linear fractional transformation parametric uncertainties in the system model. By constructing a parameter‐dependent Lyapunov–Krasovskii functional, a new set of sufficient conditions are obtained in terms of linear matrix inequalities (LMIs). The existence conditions for controllers are formulated in the form of LMIs, and the controller design is cast into a convex optimization problem subject to LMI constraints. Finally, a numerical example based on a station‐keeping satellite system is given to demonstrate the effectiveness and applicability of the proposed reliable control law. © 2014 Wiley Periodicals, Inc. Complexity 21: 214–228, 2015  相似文献   

20.
This paper deals with the tracking control of nonlinear chaotic systems with dynamics uncertainties. A robust control strategy is developed to control a class of nonlinear chaotic systems with uncertainties. The proposed strategy is an input-output control scheme which comprises an uncertainty estimator and a linearizing-like feedback. The control time is explicitly computed. Computer simulations of the Duffing system are provided to verify the validity of the proposed control scheme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号