首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
Thresholds for octave-band noises with center frequencies of 0.4, 1, 2, 4, and 10 kHz, and 1/3-octave-band noises with center frequencies of 10 and 20 kHz, were obtained from children 3-5 years of age and from a comparison group of adults. Thresholds for all frequencies decreased between 3 and 5 years of age. Thresholds decreased further between 5 years of age and adulthood, except for the 20-kHz stimulus, for which children had lower thresholds than adults. These results are discussed in terms of possible age-related changes in the mechanical properties of the ear and in the efficiency of neural coding.  相似文献   

2.
The underwater hearing sensitivity of a striped dolphin was measured in a pool using standard psycho-acoustic techniques. The go/no-go response paradigm and up-down staircase psychometric method were used. Auditory sensitivity was measured by using 12 narrow-band frequency-modulated signals having center frequencies between 0.5 and 160 kHz. The 50% detection threshold was determined for each frequency. The resulting audiogram for this animal was U-shaped, with hearing capabilities from 0.5 to 160 kHz (8 1/3 oct). Maximum sensitivity (42 dB re 1 microPa) occurred at 64 kHz. The range of most sensitive hearing (defined as the frequency range with sensitivities within 10 dB of maximum sensitivity) was from 29 to 123 kHz (approximately 2 oct). The animal's hearing became less sensitive below 32 kHz and above 120 kHz. Sensitivity decreased by about 8 dB per octave below 1 kHz and fell sharply at a rate of about 390 dB per octave above 140 kHz.  相似文献   

3.
A total of 237 students, 10 to 17 years of age, from 14 schools underwent hearing evaluations. Otoscopic examination, tympanometry and air-conduction pure tone audiometry was conducted at low (0.5, 1, 2 kHz) and high (4 and 8 kHz) frequencies. In all schools, hearing thresholds were measured with headphones in a portable audiometric booth. Socio-demographic information from students and their parents were collected using questionnaires. Overall, the prevalence of any hearing loss greater than 15 dB was 22.3% for low or high frequency pure tone averages. Self-reported symptoms of hearing loss, such as tinnitus, difficulty following a conversation with background noise, and having to turn up the TV/radio more than in the past, were associated with audiometric thresholds, most notably at 4 kHz. These study findings are among the first to provide a detailed characterization of hearing status in a sample of youth in a Canadian demographic.  相似文献   

4.
Low- and high-frequency cochlear nonlinearity was studied by measuring distortion product otoacoustic emission input/output (DPOAE I/O) functions at 0.5 and 4 kHz in 103 normal-hearing subjects. Behavioral thresholds at both f2's were used to set L2 in dB SL for each subject. Primary levels were optimized by determining the L1 resulting in the largest L(dp) for each L2 for each subject and both f2's. DPOAE I/O functions were measured using L2 inputs from -10 dB SL (0.5 kHz) or -20 dB SL (4 kHz) to 65 dB SL (both frequencies). Mean DPOAE I/O functions, averaged across subjects, differed between the two frequencies, even when threshold was taken into account. The slopes of the I/O functions were similar at 0.5 and 4 kHz for high-level inputs, with maximum compression ratios of about 4:1. At both frequencies, the maximum slope near DPOAE threshold was approximately 1, which occurred at lower levels at 4 kHz, compared to 0.5 kHz. These results suggest that there is a wider dynamic range and perhaps greater cochlear-amplifier gain at 4 kHz, compared to 0.5 kHz. Caution is indicated, however, because of uncertainties in the interpretation of slope and because the confounding influence of differences in noise level could not be completely controlled.  相似文献   

5.
The purpose of the present study was to determine the effect of primary-tone level variation, L2--L1, on the amplitude of distortion-product otoacoustic emissions (DPOAEs). The DPOAE at the frequency 2f1--f2 (f2 greater than f1) was measured in 20 ears of ten normally hearing subjects. Acoustic distortion products were generated by primaries f1 and f2 with geometric mean frequencies of 1, 2, and 4 kHz. The f2/f1 ratios were 1.25 (1 kHz), 1.23 (2 kHz), and 1.21 (4 kHz). The primary-tone level L1 was kept constant at either 65 or 75 dB SPL while the second primary-tone level L2 was varied between 20 and 90 dB SPL in 5-dB steps. The level differences L2--L1 generating maximal DPOAE amplitudes depended on L1 and on the geometric mean frequency of f1 and f2. There were large interindividual differences. Overall, the L2--L1 evoking maximal mean DPOAE amplitudes was --10 dB for geometric mean frequencies of 1 and 2 kHz with both L1 = 65 dB SPL and L1 = 75 dB SPL. For 4 kHz, L2-L1 was --5 dB with L1 = 65 dB SPL and 0 dB with L1 = 75 dB SPL. The mean slopes of the DPOAE growth functions in the initial linearly increasing portions were steeper at higher stimulus frequencies, increasing from 0.52 at 1 kHz to 0.72 at 4 kHz for L1 = 65 dB SPL and from 0.48 at 1 kHz to 0.72 at 4 kHz for L1 = 75 dB SPL.  相似文献   

6.
研究了长波8~15μm波段,阻值大于440ΩMCT光导红外探测器,探测率在10kHz,14μm大于4×1010 cm·Hz1/2/W,在1kHz和10kHz中心频率下的噪声测试,中波5~8μm红外光伏型InSb器件,探测率在25kHz,8.26μm大于1×1011 cm·Hz1/2/W,在1kHz和255kHz中心频率下的噪声测试,并对器件信号进行了测试。信号和噪声测试是在124A锁相放大器测试系统测试,对124A测试系统的不确定度进行了分析,并与动态信号分析仪35670A对器件在0~50kHz频谱范围的噪声进行了测试和比较。实验结果表明,高阻值的光导器件在1kHz和10kHz中心频率下噪声相差约1.4倍,光伏型InSb器件在1kHz和15kHz中心频率下噪声相差约1.5倍,信号测试结果在1kHz下和3kHz中心频率下变化不超过3%。通过测试和比较,对高频下的测试给出了建议。  相似文献   

7.
The underwater hearing sensitivity of a two-year-old harbor porpoise was measured in a pool using standard psycho-acoustic techniques. The go/no-go response paradigm and up-down staircase psychometric method were used. Auditory sensitivity was measured by using narrow-band frequency-modulated signals having center frequencies between 250 Hz and 180 kHz. The resulting audiogram was U-shaped with the range of best hearing (defined as 10 dB within maximum sensitivity) from 16 to 140 kHz, with a reduced sensitivity around 64 kHz. Maximum sensitivity (about 33 dB re 1 microPa) occurred between 100 and 140 kHz. This maximum sensitivity range corresponds with the peak frequency of echolocation pulses produced by harbor porpoises (120-130 kHz). Sensitivity falls about 10 dB per octave below 16 kHz and falls off sharply above 140 kHz (260 dB per octave). Compared to a previous audiogram of this species (Andersen, 1970), the present audiogram shows less sensitive hearing between 2 and 8 kHz and more sensitive hearing between 16 and 180 kHz. This harbor porpoise has the highest upper-frequency limit of all odontocetes investigated. The time it took for the porpoise to move its head 22 cm after the signal onset (movement time) was also measured. It increased from about 1 s at 10 dB above threshold, to about 1.5 s at threshold.  相似文献   

8.
The purpose of this research was to determine if infants, like adults, show differential localization performance in the median sagittal plane (MSP) as a function of the spectrum of the signal. Infants 6-18 months of age were seated in a dark room facing an array of nine loudspeakers, with one loudspeaker positioned at ear level, 0 degrees, and four each positioned above and below ear level at 4 degrees, 8 degrees, 12 degrees, and 16 degrees. A two-alternative, forced-choice procedure was used in which a sequence of noise bursts was presented at 0 degrees and then shifted vertically, above or below 0 degrees, and continued to be presented until the infant made a directional head and/or eye movement; correct responses were visually reinforced. For each of three bandpass noise conditions (less than 4 kHz, 4-8 kHz, 8-12 kHz), minimum audible angle (MAA) for each listener, i.e., the smallest of the four angular shifts in vertical sound location that the listener could reliably detect, was estimated. Results indicated that MAA systematically decreased with increasing age, revealing an increasingly finer partitioning of auditory space. Moreover, performance at each age revealed the importance of high frequencies for localization in the MSP. Infants did not reliably localize the low-pass signal (less than 4 kHz) and showed the best performance to the signal comprising the highest frequencies (8-12 kHz). These findings reveal systematic age-related improvements in sound localization abilities during infancy, and suggest that spectral cues similar to those for adults operate for infants in vertical localization.  相似文献   

9.
Groups of human subjects were exposed in a diffuse sound field for 16--24 h to an octave-band noise centered at 4, 2, 1, or 0.5 kHz. Sound-pressure levels were varied on different exposure occasions. At specified times during an exposure, the subject was removed from the noise, auditory sensitivity was measured, and the subject was returned to the noise. Temporary threshold shifts (TTS) increased for about 8 h and then reached a plateau or asymptote. The relation between TTS and exposure duration can be described by a simple exponential function with a time constant of 2.1 h. In the frequency region of greatest loss, threshold shifts at asymptote increased about 1.7 dB for every 1 dB increase in the level of the noise above a critical level. Critical levels were empirically estimated to be 74.0 dB SPL at 4 kHz. 78 dB at 2 kHz, and 82 dB at 1 and 0.5 kHz. Except for the noise centered at 4.0 kHz, threshold shifts were maximal about 1/2 octave above the center frequency of the noise. A smaller second maximum was observed also at 7.0 kHz for the noise centered at 2.0 kHz, at 6.0 kHz for the noise centered at 1.0 kHz, and at 5.5 kHz for the noise centered at 0.5 kHz. After termination of the exposure, recovery to within 5 dB of pre-exposure thresholds was achieved within 24 h or less. Recovery can be described by a simple exponential function with a time constant of 7.1 h. The frequency contour defined by critical levels matches almost exactly the frequency contour defined by the E-weighting network.  相似文献   

10.
Many applications require micro-vibration measurement, especially multi-points detection at long distance in real-time. In this paper, a micro-vibration measurement approach based on digital holographic interferometry is proposed for middle-low frequency detection. It can be used to monitor irregular frequency/amplitude vibration in selected region over 10 m away simultaneously and synchronously. A series of experiments were conducted including real-time measurement of 300 Hz, 1 kHz, 2 kHz and 3 kHz constant frequency/amplitude periodic vibration, precision and frequency response tests with calibration of LDV, 1 kHz irregular amplitude vibration, irregular frequency/amplitude vibration as well as the real-time measurement and simultaneous display of multi-points vibration. The experimental results demonstrate the feasibility of the proposed method and reveal its unique advantages.  相似文献   

11.
Underwater audiograms are available for only a few odontocete species. A false killer whale (Pseudorca crassidens) was trained at Sea Life Park in Oahu, Hawaii for an underwater hearing test using a go/no-go response paradigm. Over a 6-month period, auditory thresholds from 2-115 kHz were measured using an up/down staircase psychometric technique. The resulting audiogram showed hearing sensitivities below 64 kHz similar to those of belugas (Delphinapterus leucas) and Atlantic bottlenosed dolphins (Tursiops truncatus). Above 64 kHz, this Pseudorca had a rapid decrease in sensitivity of about 150 dB per octave. A similar decrease in sensitivity occurs at 32 kHz in the killer whale, at 50 kHz in the Amazon River dolphin, at 120 kHz in the beluga, at 140 kHz in the bottlenosed dolphin, and at 140 kHz in the harbor porpoise. The most sensitive range of hearing was from 16-64 kHz (a range of 10 dB from the maximum sensitivity). This range corresponds with the peak frequency of echolocation pulses recorded from captive Pseudorca.  相似文献   

12.
Cranch GA 《Optics letters》2002,27(13):1114-1116
A novel technique for suppressing frequency noise in an erbium-doped fiber distributed-feedback laser incorporated into a master-oscillator-power-amplifier configuration by an electronic feedback technique is presented. The frequency noise is suppressed by locking of the laser emission to a fiber interferometer. The frequency noise spectral density of the laser is reduced by as much as 20 dB over the frequency range 1 Hz-10 kHz to 1.5 Hz/Hz(1/2) +/-25% at 1 kHz with a relative intensity noise spectral density below -120 dB/Hz over the frequency range 10 Hz-1 kHz. These lasers will have applications as sources for fiber-optic interferometry, high-resolution spectroscopy, and high-bandwidth communications.  相似文献   

13.
The long-term average spectrum of Spanish, as spoken in Mexico, was obtained for thirty subjects—fifteen men and fifteen women. To obtain the average spectrum, use was made of a digital system comprised of an FFT analyzer interfaced to a microcomputer. All data acquisition, storage and processing was thus digital. The main features of the average spectrum are: peaks in the region of 240 Hz and 500 Hz, a ?20 dB/octave slope from 0·5 kHz to 1 kHz; a flat region between 1 kHz and 2 kHz, a further decline of ?10 dB/octave to ≈3 kHz and, finally, a large flat region (within 5 dB) from 3 kHz up to 10 kHz. These results agree reasonably well with some other studies for English. The technique employed here is thus adequate for this kind of study, being relatively fast and easy to implement.  相似文献   

14.
Devices known as jawphones have previously been used to measure interaural time and intensity discrimination in dolphins. This study introduces their use for measuring hearing sensitivity in dolphins. Auditory thresholds were measured behaviorally against natural background noise for two bottlenose dolphins (Tursiops truncatus); a 14-year-old female and a 33-year-old male. Stimuli were delivered to each ear independently by placing jawphones directly over the pan bone of the dolphin's lower jaw, the assumed site of best reception. The shape of the female dolphin's auditory functions, including comparison measurements made in the free field, favorably matches that of the accepted standard audiogram for the species. Thresholds previously measured for the male dolphin at 26 years of age indicated a sensitivity difference between the ears of 2-3 dB between 4-10 kHz, which was considered unremarkable at the time. Thresholds for the male dolphin reported in this study suggest a high-frequency loss compared to the standard audiogram. Both of the male's ears have lost sensitivity to frequencies above 55 kHz and the right ear is 16-33 dB less sensitive than the left ear over the 10-40 kHz range, suggesting that males of the species may lose sensitivity as a function of age. The results of this study support the use of jawphones for the measurement of dolphin auditory sensitivity.  相似文献   

15.
Overshoot was measured in both ears of four subjects with normal hearing and in five subjects with permanent, sensorineural hearing loss (two with a unilateral loss). The masker was a 400-ms broadband noise presented at a spectrum level of 20, 30, or 40 dB SPL. The signal was a 10-ms sinusoid presented 1 or 195 ms after the onset of the masker. Signal frequency was 1.0 or 4.0 kHz, which placed the signal in a region of normal (1.0 kHz) or impaired (4.0 kHz) absolute sensitivity for the impaired ears. For the normal-hearing subjects, the effects of signal frequency and masker level were similar to those published previously. In particular, overshoot was larger at 4.0 than at 1.0 kHz, and overshoot at 4.0 kHz tended to decrease with increasing masker level. At 4.0 kHz, overshoot values were significantly larger in the normal ears: Maximum values ranged from about 7-26 dB in the normal ears, but were always less than 5 dB in the impaired ears. The smaller overshoot values resulted from the fact that thresholds in the short-delay condition were considerably better in the hearing-impaired subjects than in the normal-hearing subjects. At 1.0 kHz, overshoot values for the two groups of subjects more or less overlapped. The results suggest that permanent, sensorineural hearing loss disrupts the mechanisms responsible for a large overshoot effect.  相似文献   

16.
For 68 temporal bones, frequency curves for the round window volume displacement have been measured for a constant sound pressure at the eardrum. Phase curves were measured for 33 of the specimens. The levels averaged amplitude curve is approximately flat below 1 kHz, where the round window volume displacement per unit sound pressure at the eardrum is 6.8 X 10(-5) mm3/Pa, and falls off by about 15 dB/oct at higher frequencies. For the 20 ears having the largest sound transmission magnitude at low frequencies, the corresponding amplitude curve is displaced about 5 dB towards higher levels. The phase of the round window volume displacement lags the eardrum sound pressure phase. In average for 33 temporal bones, the phase lag increases from zero at the lowest frequencies to pi near 2 kHz and to about 1.5 pi at 10 kHz.  相似文献   

17.
H Mahfoz Kotb  Mohamad M Ahmad 《中国物理 B》2016,25(12):128201-128201
We report on the measurements of the electrical and dielectric properties of Na_(1/2)La_(1/2)Cu_3Ti_4O_(12)(NLCTO) ceramics prepared by high energy ball-milling and conventional sintering without any calcination steps. The x-ray powder diffraction analysis shows that pure perovskite-like CCTO phase is obtained after sintering at 1025?C–1075?C. Higher sintering temperatures result in multi-phase ceramics due to thermal decomposition. Scanning electron microscope observations reveal that the grain size is in a range of ~ 3 μm–5 μm for these ceramics. Impedance spectroscopy measurements performed in a wide frequency range(1 Hz–10 MHz) and at various temperatures(120 K–470 K) are used to study the dielectric and electrical properties of NLCTO ceramics. A good compromise between high ε(5.7 × 10~3 and 4.1 × 10~3 at 1.1 k Hz and 96 k Hz, respectively) and low tan δ(0.161 and 0.126 at 1.1 k Hz and 96 k Hz, respectively) is obtained for the ceramic sintered at 1050℃. The observed high dielectric constant behavior is explained in terms of the internal barrier layer capacitance effect.  相似文献   

18.
In contrast to clinical click-evoked otoacoustic emission (CEOAE) tests that are inaccurate above 4-5 kHz, a research procedure measured CEOAEs up to 16 kHz in 446 ears and predicted the presence/absence of a sensorineural hearing loss. The behavioral threshold test that served as a reference to evaluate CEOAE test accuracy used a yes-no task in a maximum-likelihood adaptive procedure. This test was highly efficient between 0.5 and 12.7 kHz: Thresholds measured in 2 min per frequency had a median standard deviation (SD) of 1.2-1.5 dB across subjects. CEOAE test performance was assessed by the area under the receiver operating characteristic curve (AUC). The mean AUC from 1 to 10 kHz was 0.90 (SD=0.016). AUC decreased to 0.86 at 12.7 kHz and to 0.7 at 0.5 and 16 kHz, possibly due in part to insufficient stimulus levels. Between 1 and 12.7 kHz, the medians of the magnitude difference in CEOAEs and in behavioral thresholds were <4 dB. The improved CEOAE test performance above 4-5 kHz was due to retaining the portion of the CEOAE response with latencies as short as 0.3 ms. Results have potential clinical significance in predicting hearing status from at least 1 to 10 kHz using a single CEOAE response.  相似文献   

19.
The overshoot effect can be reduced by temporary hearing loss induced by aspirin or exposure to intense sound. The present study simulated a hearing loss at 4.0 kHz via pure-tone forward masking and examined the effect of the simulation on threshold for a 10-ms, 4.0-kHz signal presented 1 ms after the onset of a 400-ms, broadband noise masker whose spectrum level was 20 dB SPL. Masker frequency was 3.6, 4.0, or 4.2 kHz, and masker level was 80 dB SPL. Subject-dependent delays were determined such that 10 or 20 dB of masking at 4.0 kHz was produced. In general, the pure-tone forward masker did not reduce the simultaneous-masked threshold, suggesting that elevating threshold with a pure-tone forward masker does not sufficiently simulate the effect of a temporary hearing loss on overshoot.  相似文献   

20.
The hearing sensitivities of two short-finned pilot whales (Globicephala macrorhynchus) were investigated by measuring auditory evoked potentials generated in response to clicks and sinusoidal amplitude modulated (SAM) tones. The first whale tested, an adult female, was a long-time resident at SeaWorld San Diego with a known health history. Click-evoked responses in this animal were similar to those measured in other echolocating odontocetes. Auditory thresholds were comparable to dolphins of similar age determined with similar evoked potential methods. The region of best sensitivity was near 40 kHz and the upper limit of functional hearing was between 80 and 100 kHz. The second whale tested, a juvenile male, was recently stranded and deemed non-releasable. Click-evoked potentials were not detected in this animal and testing with SAM tones suggested severe hearing loss above 10 kHz.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号