首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A perturbation method based on a long wavelength approximation is used to obtain the leading order equations governing the fluid dynamics of laminar, annular, round and compound liquid jets and liquid films on convex and concave cylindrical surfaces. An approximate, integral balance method is also used to determine the inviscid core and the thickness of the boundary layers of annular liquid jets near the nozzle exit. The steady state equations are transformed into parabolic ones by means of the von Mises transformation and solved in an adaptive, staggered grid to determine the axial velocity distribution and the location of the free surfaces. It is shown that, for free surface flows subject to inertia, gravity and surface tension, there is a contraction near the nozzle which increases as the Reynolds and Froude numbers are decreased, and is nearly independent of the Weber number for Weber numbers larger than about one hundred. It is also shown that this contraction depends on the flow considered, and is larger for films on convex surfaces. It is also shown that, for round jets, the acceleration of the jet's free surface is larger than that of the jet's centerline, although, sufficiently far from the nozzle exit, the axial velocity is uniform across the jet.  相似文献   

2.
Asymptotic methods based on the slenderness ratio are used to obtain the leading-order equations which govern the fluid dynamics of both hollow and solid, compound jets such as those employed in the manufacture of textile fibers, composite fibers and optical fibers. These fibers consist of an inner material which may be a round jet or an annular one and which, in turn, is surrounded by an annular jet in contact with ambient air. It is shown that the leading-order equations are one-dimensional and that it is possible to obtain analytical solutions for several flow regimes for steady, compound jets. These analytical solutions are presented here. The one-dimensional leading-order equations for the fluid dynamics of annular liquid jets at low Reynolds numbers are also derived here.  相似文献   

3.
The nonlinear dynamics of and heat and mass transfer processes in annular liquid jets are analyzed by means of a nonlinear system of integrodifferential equations which account for the liquid motion and the gases enclosed by the jet. Both linear and sinusoidal heat and mass addition sources are considered to take place homogeneously within the volume enclosed by the jet's inner interface in an attempt to simulate the combustion of hazardous wastes or materials within this volume. It is shown that the liquid's temperature at the jet's inner interface increases rapidly with linear heat addition, but drops also quickly to its initial value once heat addition is ended, whereas the pressure coefficient and the volume enclosed by the jet increase until they reach a maximum value and then decrease in an oscillatory manner towards their steady values. For the case of sinusoidal heat addition, it is shown that the pressure coefficient and interfacial concentration, temperature and heat and mass fluxes oscillate in a sinusoidal manner with the same frequency as that of the sinusoidal heat source. It is also shown that mass transfer phenomena are much slower than heat transfer ones. For the case of linear mass addition, it is shown that the temperature of the gases enclosed by the jet first decreases because of dilution and then it increases until it reaches a constant value that corresponds to the same temperature for the gases and the flowing liquid. The pressure of the gases enclosed by the jet first increases because of mass addition and then slowly decreases because of mass absorption by the jet.  相似文献   

4.
Heat and mass transfer phenomena in annular liquid jets are analyzed at high Reynolds numbers by means of a model derived from the governing equations that takes into account the effects of surface tension and boundary conditions at the gas–liquid interfaces and the large differences between the thermal and mass diffusivities, densities, dynamic viscosities, and thermal conductivities between gases and liquids. The model clearly illustrates the stiffness in both space and time associated with the concentration, linear momentum and energy boundary layers, and the initial cooling of the gases enclosed by the jet when, starting from a steady state where gases are injected into the volume enclosed by the jet at a rate equal to the heat and mass absorption rates by the liquid, gas injection is stopped. It is shown that, owing to the non-linear integrodifferential coupling between the fluid dynamics and heat and mass transfer processes, the pressure of the gases enclosed by the jet may vary in either a monotonic or an oscillatory manner depending on the large number of non-dimensional parameters that govern the heat and mass transfer phenomena. For the underpressurized jets considered here, it is shown that thermal equilibrium is achieved at a much faster rate than that associated with mass transfer, double diffusive phenomena in the liquid may occur, and the mass and volume of the gases enclosed by the jet may increase or decrease as functions of time until a steady equilibrium condition is reached.  相似文献   

5.
The effects of g-jitter on heat and mass transfer in underpressurized, annular liquid jets are analyzed numerically as a function of the amplitude and frequency of the gravitational modulation by means of a mapping technique that transforms the time-dependent geometry of these jets into a unit square and a conservative finite difference method. It is shown that the pressure coefficient, gas concentration at the jet's inner interface, heat fluxes at the jet's inner and outer interfaces and interfacial temperature are periodic functions of time whose amplitudes increase as the amplitude of the g-jitter is increased, but decrease as the jitter frequency is increased. The pressure coefficient is almost in phase with the heat flux at the jet's outer interface, and out of phase with the mass transfer rate at the jet's inner interface. It is also shown that the temperature field adapts itself rapidly to the imposed gravity modulation, and thermal equilibrium is reached quickly. However, mass transfer phenomena are very slow and require a very long time to become periodic.  相似文献   

6.
A quasi-one-dimensional model was developed to describe a swirling, thin, liquid film inside nozzles with different wall profiles. The model quantifies the effects of swirl strength, initial film thickness, and Reynolds and Weber numbers on the film thickness along the nozzle surface. Moreover, the model allows for a rapid (at least, qualitative) evaluation of different effects, e.g. of the swirl strength and nozzle geometry, and can serve as a benchmark case for the subsequent more involved numerical simulations. Steady-state solutions are presented as a function of various parameters. The effect of the nozzle geometry on film thickness is explored. As swirling flow entered the expanding (diverging) section of the nozzle, film thickness decreased to satisfy continuity (to conserve mass). Conversely, film thickness increased upon entering the contracting (converging) region of the nozzle. Geometric effects controlled film thicknesses much more than other flow parameters. This quasi-one-dimensional model for a swirling thin film can be useful for designing a swirl jet used in various industrial applications.  相似文献   

7.
An analysis is provided of a slender stream of water whose cross-sectionis the region lying between concentric circular free streamlines.In the absence of gravity, explicit integral expressions arederived for the radii as a function of distance along the jet.In particular, for intially-contracting jets, the collapse distance,at which the inner radius vanishes, is determined. In the presenceof gravity, the problem for both vertically upward and verticallydownward annular jets can be reduced to that of solving a non-linearordinary differential equation, and numerical solutions areobtained. An outline is given of the procedures required tomatch these free jets to exit flows from slender nozzles.  相似文献   

8.
合成射流激励器射流矢量控制的物理因素   总被引:2,自引:0,他引:2  
对不同出口构型合成射流激励器进行射流矢量控制进行了数值研究,并对决定合成射流激励器射流矢量控制的物理因素进行了分析和归纳.低压区位置和面积及其压强梯度、合成射流动量分量、合成射流对主流的卷吸率是直接控制主射流矢量力和矢量角的物理因素.合成射流的3个特征参数直接影响和控制低压区的面积及其压强梯度,合成射流激励器出口台阶和出口斜喷角都对低压区位置、面积和合成射流对主流的卷吸率有影响和调节作用,合成射流激励器出口斜喷角还直接控制合成射流动量分量.基于对合成射流激励器射流矢量控制物理因素的分析,确定了控制物理因素的源变量,建立了由控制能力函数和调节功能函数组成的合成射流矢量控制初步模型,初步模型能够对源变量引起的合成射流激励器射流矢量控制效率不同作出解释,并进一步指出了进行射流矢量控制的最佳激励器是充分利用调节功能函数.  相似文献   

9.
Asymptotic methods are employed to determine the leading-order equations that govern the fluid dynamics of slender, and thin and slender, inviscid, irrotational, planar liquid sheets subject to pressure differences and gravity. Two flow regimes have been identified depending on the Weber number, and analytical solutions to the steady state equations are provided. Linear stability studies indicate that the sinuous mode corresponds to Weber numbers on the order of unity, while the varicose mode is associated with small Weber numbers. For small Weber numbers, the nonlinear stability of liquid sheets is determined analytically in terms of elliptic integrals of the first and second kinds. It is also shown that the sinuous mode of thin and slender liquid sheets is identical to the same mode for slender sheets.  相似文献   

10.
In view of the “round jet initial condition anomaly”, discussed in literature, we investigate the effect of inflow conditions resulting from the use of different nozzle geometries to form the jet. RANS simulations in the framework of OpenFOAM using the k − ε turbulence model are performed. As the standard model coefficient Cε1 = 1.44 is known to overpredict spreading rates for round jets, a value of Cε1 = 1.6 was recommended for this case already in the 1970's. While this works well for jets issuing from long pipes, it does not give satisfactory results for other nozzle geometries. To overcome this deficiency while keeping the k − ε model, we suggest modified coefficients Cε1 based on profiles of mean flow and turbulence at the nozzle exit. We determine optimal values of Cε1 for three different nozzle geometries, and test them at various Reynolds numbers. Good agreement with experimental data is obtained. (© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
The aerodynamic development of fully turbulent isothermal jets issuing from rectangular slot-burners was modelled by obtaining a solution to the Reynolds averaged Navier–Stokes equations. A finite-volume method was used with the standard k–ε, RNG k–ε and Reynolds stress turbulence models. The slot-burners were based on physical models, which were designed to be representative of typical burner geometries found in tangentially-fired coal boilers. Two cases were investigated, in which jets from three vertically stacked rectangular nozzles discharged at 90° and then 60° to the wall containing the burner. The nozzle angle had little effect on jet centreline velocity decay, with the 60° nozzle showing a marginally higher rate of decay. The jets from the 60° nozzles were found to deviate slightly from their geometric axis slightly due to internal pressure redistribution in the flow at the nozzles. The simulations were validated against the physical models and were found to reproduce the flow field of the jets accurately with the Reynolds stress model producing the best results.  相似文献   

12.
In this work a two phase 3D mathematical model was developed using the volume of fluid (VOF) algorithm, which is able to accurately describe the cavity geometry and size as well as the liquid flow patterns created when a gas jet that impinges on a liquid free surface. These phenomena are commonly found in steelmaking operations such as in the Electric Arc Furnace (EAF) and the Basic Oxygen Furnace (BOF) where oxygen jets impinge on a steel bath and they control heat, momentum and mass transfer. The model was successfully validated with measurements made on a physical model through velocity fields obtained by Particle Image Velocimetry (PIV) and high speed camera images of the cavity. Agreement between model predictions and experimental measurements is excellent in both x-velocity component of the liquid and cavity sizes. The cavity formed in the liquid by the impinging jet depends on a force balance at the free surface where the inertial force of the jet governs this phenomena, while the liquid circulation depends on also the jet inertial force of the jet, but its angle plays an important role, being the lowest angle the best choice to shear the bath and promote stronger circulation and better mixing in the liquid.  相似文献   

13.
We characterize a class of physical boundary conditions that guarantee the existence and uniqueness of the subsonic Euler flow in a general finitely long nozzle.More precisely,by prescribing the incoming flow angle and the Bernoulli’s function at the inlet and the end pressure at the exit of the nozzle,we establish an existence and uniqueness theorem for subsonic Euler flows in a 2-D nozzle,which is also required to be adjacent to some special background solutions.Such a result can also be extended to the 3-D asymmetric case.  相似文献   

14.
15.
We construct special solutions of the full Euler system for steady compressible flows in a convergent-divergent approximate nozzle and study the stability of the purely subsonic flows. For a given pressure p0 prescribed at the entry of the nozzle, as the pressure p1 at the exit decreases, the flow patterns in the nozzle change continuously: there appear subsonic flow, subsonic-sonic flow, transonic flow and transonic shocks. Our results indicate that, to determine a subsonic flow in a two-dimensional nozzle, if the Bernoulli constant is uniform in the flow field, then this constant should not be prescribed if the pressure, density at the entry and the pressure at the exit of the nozzle are given; if the Bernoulli constant and both the pressures at the entrance and the exit are given, the average of the density at the entrance is then totally determined.  相似文献   

16.
Résumé On étudie l'écoulement libre d'un jet liquide laminaire axisymétrique émergeant d'une conduite cylindrique verticale semi-infinie, à grands nombres de Reynolds et grands nombres de Froude. Dans de telles conditions, si l'on exclut le cas des tubes capillaires, le nombre de Weber de l'écoulement est suffisamment grand pour que les effets de tension superficielle s'avèrent négligeables, ainsi que le confirme cette étude. Les équations sont simplifiées par une analyse de type couche limite. L'utilisation de la méthode des développements asymptotiques raccordés conduit à des solutions approchées semianalytiques faisant apparaitre les paramètres de similitude de l'écoulement. Ces solutions prévoient la distribution des vitesses et la forme du jet sous l'influence des forces de pesanteur et de viscosité. Des résultats expérimentaux obtenus par photographie du jet et visualisation holographique du champ des vitesses confirment les prévisions théoriques.
This paper is concerned with the laminar flow of a free liquid jet emerging from a semi infinite vertical cylindrical pipe at high Reynolds and Froude numbers. In that case, excepting the capillary tubes, the Weber number is sufficiently high so that surface tension effects may be neglected. The general equations are simplified by a boundary layer analysis and solved by using the matched asymptotic expansion's method. Approximate semi analytical solutions are presented showing parameters of similarity. These solutions predict the velocity distribution and the jet shape under the influence of body and viscous forces. Experimental results obtained by jet photography and holographic visualization of the velocity field confirm the accuracy of the calculations.
  相似文献   

17.
In this work, we have discussed some simple flows of a viscoelastic fluid with fractional Burgers’ model in an annular pipe. The fractional calculus approach is introduced in the constitutive relationship of a Burgers’ fluid model. Exact analytical solutions are obtained by using Laplace and Weber transforms for two types of flows, namely: Poiseuille flow and Axial Couette flow.  相似文献   

18.
T. Luginsland  L. Kleiser 《PAMM》2011,11(1):577-578
We developed a numerical setup to simulate swirling jet flow undergoing vortex breakdown. Our simulation code CONCYL solves the compressible Navier-Stokes equations in cylindrical coordinates using high-order numerical schemes. A nozzle is included in the computational domain to account for more realistic inflow boundary conditions. Preliminary results of a Re = 5000 compressible swirling jet at Mach number M a = 0.6 with an azimuthal velocity as high as the maximum axial velocity (swirl number S = 1.0 ) capture the fundamental characteristics of this flow type: At a certain point in time the jet spreads and develops into a conical vortex breakdown. A stagnation point-flow in the vicinity of the jet axis is clearly visible with the stagnation point located close to the nozzle exit. The stagnation point precesses in time around the jet axis, moving up- and downstream. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
针对静止环境中有障碍圆形浮力射流出现的正常绕流现象与非正常绕流现象(反射与分叉现象),分析了其主要的3个影响因素:障碍盘直径D/d(D和d分别是障碍盘和射流出口的直径),射流出口密度Froude数以及障碍盘离射流孔口的距离H/d与发生非正常绕流之间的相互关系.得到了H/d=2,4,6,8在不同D/d值时发生非正常绕流的临界密度Froude数.对直径为D/d的障碍盘,当其离射流孔口的距离H/d达到某一值时,流动仅为正常绕流流态.基于大量计算给出了不同障碍盘所要求的H/d值,综合以上因素得到了临界密度Froude数的拟合公式.对非正常绕流中射流出现反射与分叉的规律性进行了探讨.对D/d=1的有障碍浮力射流进行的数值计算表明,所有工况下的流态均为正常绕流,并得到了不同H/D条件下的轴线稀释度.  相似文献   

20.
采用两股互相冲击的圆射流可以形成环形的液体薄膜,液膜在径向扩展到一定的临界半径距离会破碎.数值模拟了液膜在周围气体中形成和破碎的非定常过程.考虑了液体和气体都是不可压缩Newton流体的轴对称问题.液体和气体的界面采用Level set函数来跟踪,Navier-Stokes 控制方程和物理边界条件采用有限差分格式离散求解.计算结果给出了环形液体薄膜形成并在其环形边缘处破碎,并缓慢运动的过程.液膜的厚度随着液膜在轴向的扩展会逐渐变薄,因此定义的局部Weber数会在径向逐渐减小,这里的局部Weber数定义为ρu2h/σ,其中ρ和σ分别为液体的密度和界面的张力,u和h分别为在径向某个位置的液膜的平均径向速度和半液膜厚度.数值结果表明就像实验中所观察到的那样,液膜径向扩展的过程的确会在局部Weber数趋向于1的时候终结而停止扩张.根据空间-时间线性稳定性理论,液膜的破碎最初是由正弦模式在临界局部Weber数Wec=1引起的,在临界局部Weber数小于1时会发生绝对不稳定性.在线性理论中另一个独立的模式,所谓的余弦模式,则增长比正弦模式要慢,从而会推测到正弦模式主导破碎的结论.然而,这里的数值结果却表明,余弦模式在界面波的非线性发展阶段实质的超越了正弦模式的增长,并对液膜的最终阶段的破碎起主导作用.这验证了线性理论只能够对触发时扰动波的性质进行预测,而对失稳后情况和结果的预测则不一定正确.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号