首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The chromatic threshold of a graph H with respect to the random graph G (n, p ) is the infimum over d > 0 such that the following holds with high probability: the family of H‐free graphs with minimum degree has bounded chromatic number. The study of the parameter was initiated in 1973 by Erd?s and Simonovits, and was recently determined for all graphs H . In this paper we show that for all fixed , but that typically if . We also make significant progress towards determining for all graphs H in the range . In sparser random graphs the problem is somewhat more complicated, and is studied in a separate paper. © 2017 Wiley Periodicals, Inc. Random Struct. Alg., 51, 185–214, 2017  相似文献   

2.
For each irrational a, 0<a<1, a particular countable graph G is defined which mirrors the asymptotic behavior of the random graph G(n, p) with edge probability p = n?a.  相似文献   

3.
Threshold probabilities for the existence in a random graph on n vertices of a graph isomorphic to a given graph of order Cn and average degree at least three are investigated. In particular it is proved that the random graph G(n, p) on n vertices with edge probability contains a square grid on En/2 vertices. © 1994 John Wiley & Sons, Inc.  相似文献   

4.
A clique coloring of a graph is a coloring of the vertices so that no maximal clique is monochromatic (ignoring isolated vertices). The smallest number of colors in such a coloring is the clique chromatic number. In this paper, we study the asymptotic behavior of the clique chromatic number of the random graph ??(n,p) for a wide range of edge‐probabilities p = p(n). We see that the typical clique chromatic number, as a function of the average degree, forms an intriguing step function.  相似文献   

5.
Given a group G, the model denotes the probability space of all Cayley graphs of G where each element of the generating set is chosen independently at random with probability p. In this article we show that for any and any family of groups Gk of order nk for which , a graph with high probability has diameter at most 2 if and with high probability has diameter greater than 2 if . We also provide examples of families of graphs which show that both of these results are best possible. Of particular interest is that for some families of groups, the corresponding random Cayley graphs achieve Diameter 2 significantly faster than the Erd?s‐Renyi random graphs. © 2014 Wiley Periodicals, Inc. Random Struct. Alg., 45, 218–235, 2014  相似文献   

6.
We find conditions for the connectivity of inhomogeneous random graphs with intermediate density. Our results generalize the classical result for G(n, p), when . We draw n independent points Xi from a general distribution on a separable metric space, and let their indices form the vertex set of a graph. An edge (i, j) is added with probability , where is a fixed kernel. We show that, under reasonably weak assumptions, the connectivity threshold of the model can be determined. © 2013 Wiley Periodicals, Inc. Random Struct. Alg., 45, 408‐420, 2014  相似文献   

7.
A graph G is said to be ‐universal if it contains every graph on at most n vertices with maximum degree at most Δ. It is known that for any and any natural number Δ there exists such that the random graph G(n, p) is asymptotically almost surely ‐universal for . Bypassing this natural boundary, we show that for the same conclusion holds when . © 2016 Wiley Periodicals, Inc. Random Struct. Alg., 50, 380–393, 2017  相似文献   

8.
We discuss a new algorithmic type of problem in random graphs studying the minimum number of queries one has to ask about adjacency between pairs of vertices of a random graph in order to find a subgraph which possesses some target property with high probability. In this paper we focus on finding long paths in when for some fixed constant . This random graph is known to have typically linearly long paths. To have edges with high probability in one clearly needs to query at least pairs of vertices. Can we find a path of length economically, i.e., by querying roughly that many pairs? We argue that this is not possible and one needs to query significantly more pairs. We prove that any randomised algorithm which finds a path of length with at least constant probability in with must query at least pairs of vertices. This is tight up to the factor. © 2016 Wiley Periodicals, Inc. Random Struct. Alg., 50, 71–85, 2017  相似文献   

9.
Let P(G, λ) be the chromatic polynomial of a graph G. A graph G is chromatically unique if for any graph H, P(H, λ) = P(G, λ) implies H is isomorphic to G. Liu et al. [Liu, R. Y., Zhao, H. X., Ye, C. F.: A complete solution to a conjecture on chromatic uniqueness of complete tripartite graphs. Discrete Math., 289, 175–179 (2004)], and Lau and Peng [Lau, G. C., Peng, Y. H.: Chromatic uniqueness of certain complete t-partite graphs. Ars Comb., 92, 353–376 (2009)] show that K(p − k, p − i, p) for i = 0, 1 are chromatically unique if pk + 2 ≥ 4. In this paper, we show that if 2 ≤ i ≤ 4, the complete tripartite graph K(p − k, p − i, p) is chromatically unique for integers ki and pk 2/4 + i + 1.  相似文献   

10.
We derive an expression of the form c ln n + o(ln n) for the diameter of a sparse random graph with a specified degree sequence. The result holds asymptotically almost surely, assuming that certain convergence and supercriticality conditions are met, and is applicable to the classical random graph Gn,p with np = Θ(1) + 1, as well as certain random power law graphs. © 2007 Wiley Periodicals, Inc. Random Struct. Alg., 2007  相似文献   

11.
We consider bipartite subgraphs of sparse random graphs that are regular in the sense of Szemerédi and, among other things, show that they must satisfy a certain local pseudorandom property. This property and its consequences turn out to be useful when considering embedding problems in subgraphs of sparse random graphs. © 2003 Wiley Periodicals, Inc. Random Struct. Alg., 22: 359–434, 2003  相似文献   

12.
Let Gn,m,k denote the space of simple graphs with n vertices, m edges, and minimum degree at least k, each graph G being equiprobable. Let G have property Ak, if G contains ⌊(k − 1)/2⌋ edge disjoint Hamilton cycles, and, if k is even, a further edge disjoint matching of size ⌊n/2⌋. We prove that, for k ≥ 3, there is a constant Ck such that if 2mCkn then Ak occurs in Gn,m,k with probability tending to 1 as n → ∞. © 2000 John Wiley & Sons, Inc. J. Graph Theory 34: 42–59, 2000  相似文献   

13.
The chromatic number of a graph G is defined as the minimum number of colors required for a vertex coloring where no two adjacent vertices are colored the same. The chromatic number of the dense random graph where is constant has been intensively studied since the 1970s, and a landmark result by Bollobás in 1987 first established the asymptotic value of . Despite several improvements of this result, the exact value of remains open. In this paper, new upper and lower bounds for are established. These bounds are the first ones that match each other up to a term of size o(1) in the denominator: they narrow down the coloring rate of to an explicit interval of length o(1), answering a question of Kang and McDiarmid.  相似文献   

14.
We consider the complete graph on n vertices whose edges are weighted by independent and identically distributed edge weights and build the associated minimum weight spanning tree. We show that if the random weights are all distinct, then the expected diameter of such a tree is Θ(n1/3). This settles a question of Frieze and Mc‐Diarmid (Random Struct Algorithm 10 (1997), 5–42). The proofs are based on a precise analysis of the behavior of random graphs around the critical point. © 2008 Wiley Periodicals, Inc. Random Struct. Alg., 2009  相似文献   

15.
《Journal of Graph Theory》2018,87(2):176-187
For graphs G and H, let  denote the property that for every proper edge‐coloring of G (with an arbitrary number of colors) there is a rainbow copy of H in G, that is, a copy of H with no two edges of the same color. The authors (2014) proved that, for every graph H, the threshold function  of this property for the binomial random graph  is asymptotically at most , where denotes the so‐called maximum 2‐density of H. Nenadov et al. (2014) proved that if H is a cycle with at least  seven vertices or a complete graph with at least 19 vertices, then . We show that there exists a fairly rich, infinite family of graphs F containing a triangle such that if for suitable constants and , where , then almost surely. In particular, for any such graph F.  相似文献   

16.
This paper looks at random regular simple graphs and considers nearest neighbor random walks on such graphs. This paper considers walks where the degree d of each vertex is around (log n)a where a is a constant which is at least 2 and where n is the number of vertices. By extending techniques of Dou, this paper shows that for most such graphs, the position of the random walk becomes close to uniformly distributed after slightly more than log n/log d steps. This paper also gets similar results for the random graph G(n, p), where p = d/(n − 1). © 1996 John Wiley & Sons, Inc.  相似文献   

17.
18.
What is the probability that the number of triangles in , the Erd?s‐Rényi random graph with edge density p , is at least twice its mean? Writing it as , already the order of the rate function r (n, p ) was a longstanding open problem when p = o (1), finally settled in 2012 by Chatterjee and by DeMarco and Kahn, who independently showed that for ; the exact asymptotics of r (n, p ) remained unknown. The following variational problem can be related to this large deviation question at : for δ > 0 fixed, what is the minimum asymptotic p‐relative entropy of a weighted graph on n vertices with triangle density at least (1 + δ )p 3? A beautiful large deviation framework of Chatterjee and Varadhan (2011) reduces upper tails for triangles to a limiting version of this problem for fixed p . A very recent breakthrough of Chatterjee and Dembo extended its validity to for an explicit α > 0, and plausibly it holds in all of the above sparse regime. In this note we show that the solution to the variational problem is when vs. when (the transition between these regimes is expressed in the count of triangles minus an edge in the minimizer). From the results of Chatterjee and Dembo, this shows for instance that the probability that for has twice as many triangles as its expectation is where . Our results further extend to k‐cliques for any fixed k , as well as give the order of the upper tail rate function for an arbitrary fixed subgraph when . © 2016 Wiley Periodicals, Inc. Random Struct. Alg., 50, 420–436, 2017  相似文献   

19.
We consider the problem of generating a coloring of the random graph ??n,p uniformly at random using a natural Markov chain algorithm: the Glauber dynamics. We assume that there are βΔ colors available, where Δ is the maximum degree of the graph, and we wish to determine the least β = β(p) such that the distribution is close to uniform in O(n log n) steps of the chain. This problem has been previously studied for ??n,p in cases where np is relatively small. Here we consider the “dense” cases, where np ε [ω ln n, n] and ω = ω(n) → ∞. Our methods are closely tailored to the random graph setting, but we obtain considerably better bounds on β(p) than can be achieved using more general techniques. © 2009 Wiley Periodicals, Inc. Random Struct. Alg., 2009  相似文献   

20.
We study the threshold for the existence of a spanning maximal planar subgraph in the random graph Gn, p . We show that it is very near p = 1/n? We also discuss the threshold for the existence of a spanning maximal outerplanar subgraph. This is very near p = 1/n½.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号