首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mixed 2,4'-bipyridine-oxalato complexes of the formulae M(2,4'-bipy)2 C2 O4 2H2 O (M (II)=Mn, Co, Ni, Cu; 2,4'-bipyridine=2,4'-bipy or L ; C2 O2– 4 =ox) have been prepared and characterized. IR data show that the 2,4'-bipy coordinated with these metals(II) via the least hindered (4')N atom; that oxalate group acts as bidentate chelating ligand. Room temperature magnetic moments are normal for the orbital singlet states. The thermal decomposition of these complexes was investigated by TG, DTA and DTG in air. The endothermic or exothermic character of the decomposition of ML2 (ox)2H2 O was discussed. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

2.
The compounds ML2(NCS)2, (M(II)=Mn, Co), FeL2(NCS)2×2H2O, NiL3 NCS)2×3H2O (L=2,2'-bipyridine, 2-bipy) MX2(NCS)2×2H2O (M(II)=Mn, Fe; X=4,4'-bipyridine, 4-bipy) have been prepared and their IR spectra and molar conductivity studied. The thermal decomposition of the complexes was studied under non-isothermal conditions in air. During heating the hydrated complexes lose crystallization water molecules in one or two steps and then decompose via different intermediate compounds to the oxides Mn3O4, Fe2O3, CoO, NiO. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
New mixed ligand complexes of the following stoichiometric formulae: M(2-bpy)2(RCOO)2·nH2O, M(4-bpy)(RCOO)2·H2O and M(2,4’-bpy)2(RCOO)2·H2O (where M(II)=Zn, Cd; 2-bpy=2,2’-bipyridine, 4-bpy=4,4′-bipyridine, 2,4′-bpy=2,4′-bipyridine; R=C2H5; n=2 or 4) were prepared in pure solid-state. These complexes were characterized by chemical and elemental analysis, IR and conductivity studies. Thermal behaviour of compounds was studied by means of DTA, DTG, TG techniques under static conditions in air. The final products of pyrolysis of Cd(II) and Zn(II) compounds were metal oxides MO. A coupled TG/MS system was used to analyse of principal volatile products of thermal decomposition or fragmentation of Zn(4-bpy)(RCOO)2·H2O under dynamic air and argon atmosphere. The principal species correspond to: C+, CH+, CH3 +, C2H2 +, HCN+, C2H5 + or CHO+, CH2O+ or NO+, CO2 +, 13C16O2 + and 12C16O18O+ and others; additionally CO+ in argon atmosphere.  相似文献   

4.
Complexes of the general formulae Mn(2-bpy)2(CCl3COO)2, Co(2-bpy)2(CCl3COO)2·H2O and Ni(2-bpy)2(CCl3COO)2·2H2O (where: 2-bpy=2,2'-bipyridine) have been prepared and characterized by VIS and IR spectroscopy, conductivity and magnetic measurements. The thermal properties of complexes in the solid state were studied under non-isothermal conditions in air atmosphere. During heating the complexes decompose via different intermediate products to the oxides Mn3O4, CoO and NiO. A coupled TG-MS system was used to detection the principal volatile products of thermal decomposition and fragmentation processes of obtained compounds. The principal volatile products of thermal decomposition of complexes are: H2O+, CO2 +, Cl2 + and other. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

5.
Summary The new mixed-ligand complexes of d-electron metals (M(II)=Mn, Ni, Cu) with 2,2'-bipyridine (2-bpy) and mono- or dichloroacetates were prepared as crystalline solids. The general formulae of the synthetized complexes are: Cu(2-bpy)2(CClH2COO)2·2H2O, Mn(2-bpy)2(CCl2HCOO)2, M(2-bpy)2(CCl2HCOO)2·2H2O (M(II)=Ni, Cu). The compounds were characterized by chemical analysis, IR and VIS spectroscopy. Their magnetic, molar conductivity and thermal properties also were studied. During heating in air complexes decompose via different intermediate products to metal oxides. A coupled TG-MS system was used to analyse the principal volatile thermal decomposition (or fragmentation) products of 2,2'-bipyridine-chloroacetato complexes.  相似文献   

6.
The [Co(HOr)(H2O)2(im)2] (1), [Ni(HOr)(H2O)2(im)2] (2), [Zn(H2O)2(im)4](H2Or)2 (3) and [Cd(HOr)(H2O)(im)3] (4) complexes (H3Or: orotic acid, im: imidazole) were synthesized and characterized by elemental analysis, magnetic and conductance measurements, UV-vis and IR spectra. The thermal behaviour of the complexes was also studied by simultaneous thermal analysis techniques (TG, DTG and DTA). The orotate ligand (HOr2−) coordinated to the Co(II), Ni(II) and Cd(II) ions are chelated to the deprotonated pyrimidine nitrogen (N(3)) and the carboxylate oxygen, while do not coordinate to the Zn(II) ion is present as a counter-ion (H2Or). The first thermal decomposition process of all the complexes is endothermic deaquation. This stage is followed by partially (or completely) decomposition of the imidazole and orotate ligands. In the later stage, the remained organic residue exothermically burns. On the basis of the first DTGmax, the thermal stability of the complexes follows order: 2, 176°C>1, 162°C>4, 155°C>3, 117°C in static air atmosphere. The final decomposition products which identified by IR spectroscopy were the corresponding metal oxides.  相似文献   

7.
The complexes with the empirical formula M(4-bipy)(ClCH2COO)2 ×nH2O (where: 4-bipy=4,4'-bipyridine, L=ClCH2 COO, M (II)=Mn, Co, Ni, Cu) were prepared and characterized via the IR and electronic (VIS) spectra and conductivity measurements. Thermal decomposition of these compounds was studied. During heating in air dehydration processes occur. The anhydrous compounds decompose at high temperature to oxides. The principal volatile mass fragments correspond to: H2O, CO2, CH3Cl, HCl, Cl2 and other. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

8.
Two lactates and four new mixed ligand complexes with formulae Co(lact)2·2H2O, Ni(lact)2·3H2O, Co(4-bpy)(lact)2, Co(2,4'-bpy)2(lact)2, Ni(4-bpy)(lact)2·2H2O and Ni(2,4'-bpy)2(lact)2 (where 4-bpy=4,4'-bipyridine, 2,4'-bpy=2,4'-bipyridine, lact=CH3CH(OH)COO-) were isolated and investigated. The thermal behaviour of compounds was studied by thermal analysis (TG, DTG, DTA). In the case of hydrated complexes thermal decomposition starts with the release of water molecules. The compounds decompose at high temperature to metal(II) oxides in air. A coupled TG-MS system was used to analyse the principal volatile products of thermolysis and fragmentation processes of obtained complexes. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
New mixed-ligand complexes with empirical formulae M(4-bpy)L2·1.5H2O (M(II)=Mn, Co), Ni(4-bpy)2L2 and Cu(4-bpy) L2·H2O (where: 4-bpy=4,4'-bipyridine, L=CC L2HCOO-) have been isolated in pure state. The complexes have been characterized by elemental analysis, ir spectroscopy, conductivity (in methanol, dimethylformamide and dimethylsulfoxide solutions) and magnetic and x-ray diffraction measurements. The Mn(II) and Co(II) complexes are isostructural. The way of metal-ligand coordinations discussed. the ir spectra suggest that the carboxylate groups are bonded with metal(II) in the same way (Ni, Cu) or in different way (Mn, Co). The solubility in water is in the order of 19.40·10-3÷1.88·10-3ł mol dm-3ł. During heating the hydrate complexes lose all water in one step. The anhydrous complexes decompose to oxides via several intermediate compounds. A coupled TG-MS system was used to analyse the principal volatile products of obtained complexes. The principal volatile products of thermal decomposition of complexes in air are: H2O2 +, CO2 +, HCl+, Cl2 +, NO+ and other. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
New mixed-ligand complexes of general formulae Mn(4-bpy)(CCl3COO)2⋅H2O, Ni(4-bpy)2(CCl3COO)2⋅2H2O and Zn(4-bpy)2(CCl3COO)2⋅2H2O (where 4-bpy=4,4’-bipyridine) were obtained and characterized. The IR spectra, conductivity measurements and other physical properties of these compounds were discussed. The central atoms M(II) form coordinate bonds with title ligands. The thermal behaviour of the synthesized complexes was studied in air. During heating the complexes decompose via different intermediate products to Mn3O4, NiO and ZnO; partial volatilization of ZnCl2was observed. A coupled TG-MS system was used to the analysis of the principal volatile thermal decomposition products of Mn(II) and Ni(II) complexes. The principal volatile mass fragments correspond to: H2O+, OH+, CO+ 2, HCl+, Cl+ 2, CCl+ and other. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

11.
The triethanolamine complexes, [M(tea)2]sq·nH2O, (n=2 for Co(II), n=0 for Ni(II), Cu(II) and n=1 for Cd(II), tea=triethanolamine, sq2−=squarate), have been synthesized and characterized by elemental analyses, magnetic susceptibility and conductivity measurements, UV-Vis and IR spectra, and thermal analyses techniques (TG, DTG and DTA). The Co(II), Ni(II) and Cu(II) complexes possess octahedral geometry, while the Cd(II) complex is monocapped trigonal prismatic geometry. Dianionic squarate behaves as a counter ion in the complexes. The thermal decomposition of these complexes takes place in three stages: (i) dehydration, (ii) release of the tea ligands and (iii) burning of organic residue. On the basis of the first DTGmax of the decomposition, the thermal stability of the anhydrous complexes follows the order: Ni(II), 289°C>Co(II), 230°C>Cu(II), 226°C>Cu(II), 170°C in static air atmosphere. The final decomposition products — the respective metal oxides — were identified by FTIR spectroscopy.  相似文献   

12.
The cobalt, nickel, copper and zinc atoms in bis(1,10-phenanthroline)bis(salicylato-O)metal(II) monomeric octahedral complexes [M(Hsal)2(phen)2nH2O, (M: Co(II), n=1; Cu(II), n=1.5 and Ni(II), Zn(II), n=2) are coordinated by the salicylato monoanion (Hsal) through the carboxyl oxygen in a monodentate fashion and by the 1,10-phenanthroline (phen) molecule through the two amine nitrogen atoms in a bidentate chelating manner. On the basis of the DTGmax, the thermal stability of the hydrated complexes follows order: Ni(II) (149°C)>Co(II) (134°C)>Zn(II) (132°C)>Cu(II) (68°C) in static air atmosphere. In the second stage, the pyrolysis of the anhydrous complexes takes place. The third stage of decomposition is associated with a strong exothermic oxidation process (DTA curves: 410, 453, 500 and 450°C for the Co(II), Ni(II), Cu(II) and Zn(II) complexes, respectively). The final decomposition products, namely CoO, NiO, CuO and ZnO, were identified by IR spectroscopy. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
The new mixed ligand complexes with formulae M(4-bpy)(C2H5COO)2·2H2O (where M(II)=Mn, Co, Ni; 4,4'-bpy or 4-bpy=4,4'-bipyridine) and Cu(4-bpy)0.5(C2H5COO)2·H2O were prepared and characterized by VIS (for solid compounds of Co(II), Ni(II), Cu(II) in Nujol), IR spectroscopy, X-ray powder diffraction and molar conductance in MeOH, DMF or DMSO. Thermal behaviour of complexes was studied under static conditions in air atmosphere. Corresponding metal oxides were identified as final products of pyrolysis. A coupled TG-MS system was used to analysis of principal volatile thermal decomposition and fragmentation products of isolated complexes under dynamic air and argon atmosphere. The principal species correspond to: C+, OH+, H2O+, NO+, CO2 + and other; additionally CO+ in argon atmosphere. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
The 1,10-phenanthroline (phen) complexes of Co(II), Ni(II), Cu(II) and Cd(II) orotates were synthesized and characterized by elemental analysis, magnetic susceptibility, spectral methods (UV-vis and FTIR) and thermal analysis techniques (TG, DTG and DTA). The Co(II), Ni(II), Cu(II) and Cd(II) ions in diaquabis(1,10-phenanthroline)metal(II) diorotate octahedral complexes [M(H2O)2(phen)2](H2Or)2·nH2O (M=Co(II), n=2.25; Ni(II), n=3; Cu(II) and Cd(II), n=2) are coordinated by two aqua ligands and two moles of phen molecules as chelating ligands through their two nitrogen atoms. The monoanionic orotate behaves as a counter ion in the complexes. On the basis of the first DTGmax, the thermal stability of the hydrated complexes follows the order: Cd(II), 68°C 68°C  相似文献   

15.
New mixed-ligand complexes with empirical formulae: Mn(2-bpy)1.5L2·2H2O, M(2-bpy)2L2·3H2O (M(II)=Co, Cu), Ni(2-bpy)3L2·4H2O and M(2,4’-bpy)2L2·2H2O (where 2-bpy=2,2’-bipyridine, 2,4’-bpy=2,4’-bipyridine; L=HCOO ) have been obtained in pure solid-state. The complexes were characterized by chemical and elemental analysis, IR and VIS spectroscopy, conductivity (in methanol and dimethylsulfoxide). The way of metal-ligand coordination discussed. The formate and 2,4’-bpy act as monodentate ligands and 2-bpy as chelate ligand. The new complexes with ligand isomerism were identified. During heating the complexes lose water molecules in one or two steps. Thermal decomposition after dehydration is multistage and yields corresponding metal oxides as final products. A coupled TG-MS system was used to analysis principal volatile thermal decomposition (or fragmentation) products of Ni(2,4’-bpy)2(HCOO)2·2H2O under dynamic air or argon atmosphere.  相似文献   

16.
Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) 3-methylglutarates were prepared as solids with general formula MC6 H8 O4 ×n H2 O, where n =0–8. Their solubilities in water at 293 K were determined (7.0×10−2 −4.2×10−3 mol dm−3 ). The IR spectra were recorded and thermal decomposition in air was investigated. The IR spectra suggest that the carboxylate groups are mono- or bidentate. During heating the hydrated complexes lose some water molecules in one (Mn, Co, Ni, Cu) or two steps (Cd) and then mono- (Cu) or dihydrates (Mn, Co, Ni) decompose to oxides directly (Mn, Cu, Co) or with intermediate formation of free metals (Co, Ni). Anhydrous Zn(II) complex decomposes directly to the oxide ZnO. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
Heteronuclear complexes containing oxorhenium(V), with Fe(III), Co(II), Ni(II), Cu(II), Cd(II) and UO2(VI) ions were prepared by the reaction of the complex ligands [ReO(HL1)(PPh3)(OH2)Cl]Cl (a) and/or [ReO(H2L2)(PPh3)(OH2)Cl]Cl (b), where H2L1?=?1-(2-hydroxyphenyl)butane-1,3-dione-3-(5,6-diphenyl-1,2,4-triazine-3-ylhydrazone) and H3L2?=?1-(2-hydroxyphenyl)butane-1,3-dione-3-(1H-benzimidazol-2-ylhydrazone), with transition and actinide salts. Heterodinuclear complexes of ReO(V) with Fe(III), Co(II), Ni(II), Cu(II) and Cd(II) were obtained using a 1?:?1 mole ratio of the complex ligand and the metal salt. Heterotrinuclear complexes were obtained containing ReO(V) with UO2(VI) and Cu(II) using 2?:?1 mole ratios of the complex ligand and the metal salts. The complex ligands a and b coordinate with the heterometal ion via a nitrogen of the heterocyclic ring and the nitrogen atom of the C=N7 group. All transition metal cations in the heteronuclear complexes have octahedral configurations, while UO2(VI)?complexes have distorted dodecahedral geometry. The structures of the complexes were elucidated by IR, ESR, electronic and 1H NMR spectra, magnetic moments, conductance and TG-DSC measurements. The antifungal activities of the complex ligands and their heteronuclear complexes towards Alternaria alternata and Aspergillus niger showed comparable behavior with some well-known antibiotics.  相似文献   

18.
New complexes of the formulae K3[RhL 3]·2 H2O, [PdL]·H2O and [M(LH2)Cl2] [whereM = Pd, Pt andLH2 = bis(o-aminobenzenesulfonyl)ethylenediamine] have been prepared and characterized by conductivity measurements, thermogravimetric analysis, X-ray powder patterns and IR, Ligand Field and1H-NMR spectroscopy.
Rhodium(III), Palladium(II)- und Platin(II)-Komplexe mit Bis(o-aminobenzolosulfonyl)ethylendiamin (Kurze Mitteilung)
Zusammenfassung Neue Komplexe der allgemeinen Formeln K3[RhL 3]·2H2O, [PdL]·H2O und [M(LH2)Cl2] mitM = Pd, Pt undLH2 = Bis(o-aminobenzolosulfonyl)ethylendiamin wurden dargestellt und mit Konduktionsmessungen, thermogravimetrischen Analysen, Röntgenstrukturanalysen, IR, Ligandfeld- und1H-NMR-Spektroskopie charakterisiert.
  相似文献   

19.
New Co(II), Ni(II), and Cu(II) complexes with 4-(3-hydroxyphenyl)-1,2,4-triazole (L) with the compositions [Co3L6(H2O)5(C2H5OH)](NO3)6 · 2H2O · C2H5OH (I), [Ni3L6(H2O)6](NO3)6 · 2H2O (II), and [M3L6(H2O)6](ClO4)6 · nH2O (M = Co2+, n = 2 (III); Ni2+, n = 2 (IV); Cu2+, n = 0 (V)) are synthesized. The complexes are studied by X-ray structure analysis, X-ray diffraction analysis, UV and IR spectroscopy, and the statistical magnetic susceptibility method. All compounds have the linear trinuclear structure. Ligand L is coordinated to the metal ions by the N(1) and N(2) atoms of the heterocycle according to the bidentate bridging mode. In all compounds the coordination polyhedron of the metal atom is a distorted octahedron. The molecular and crystal structures of compound I, [Co3L6(H2O)6](ClO4)6 · 8C2H5OH (IIIa), and [Ni3L6(H2O)6](ClO4)6 · 8C2H5OH (IVa) are determined.  相似文献   

20.
New mixed-ligands complexes with empirical formulae: M(2,4′-bpy)2L2·H2O (M(II)Zn, Cd), Zn(2-bpy)3L2·4H2O, Cd(2-bpy)2L2·3H2O, M(phen)L2·2H2O (where M(II)=Mn, Ni, Zn, Cd; 2,4′-bpy=2,4′-bipyridine, 2-bpy=2,2′-bipyridine, phen=1,10-phenanthroline, L=HCOO) were prepared in pure solid state. They were characterized by chemical, thermal and X-ray powder diffraction analysis, IR spectroscopy, molar conductance in MeOH, DMF and DMSO. Examinations of OCO absorption bands suggest versatile coordination behaviour of obtained complexes. The 2,4′-bpy acts as monodentate ligand; 2-bpy and phen as chelating ligands. Thermal studies were performed in static air atmosphere. When the temperature raised the dehydration processes started. The final decomposition products, namely MO (Ni, Zn, Cd) and Mn3O4, were identified by X-ray diffraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号