共查询到20条相似文献,搜索用时 93 毫秒
1.
基于误差反传神经网络的船舶横摇时间序列预报 总被引:3,自引:1,他引:3
给出了误差反传神经网络模型和学习型算法及其改进型学习算法,并将其应用于船舶横摇运动时间序列预报,取得了较好的效果。亦可用于纵摇、艏摇的时间序列预报。 相似文献
2.
针对在非线性时间序列的BP神经网络建模预测的基本方法中,存在的建模速度慢,计算较复杂等问题,提出一种改进的BP神经网络动态建模与预测方法,并运用该方法对一非线性时间序列进行了仿真,仿真结果表明此方法的实际应用效果较好。 相似文献
3.
本文对香港恒生指数期货(HSI)的时间序列进行了分析和预测。我们发现该时间序列具有分数组和正的Lyapunov指数,这表明该序列是由内在的混沌确定力产生的。在对该序列进行动力学重构和可测性分析的基础上,我们用混沌算法的前馈神经网络对它进行了在线预测。计算机模拟表明混沌算法神经网络的预测噗蒿于背传算法神经网络的预测精度。 相似文献
4.
提出一种非线性时间序列的多步超前独立预测方法. 对比逐步递归方法和独立预测方法, 分析了积累误差对多步超前预测性能的影响. 采用递归神经网络(RNN)实现了独立预测方法, 建立了城市轨道交通能耗预测模型. 通过MATLAB训练和测试该模型, 比较了两种方法下的多步超前预测输出. 结果表明,独立预测方法的误差优于逐步递归方法. 最后指出了独立预测方法的优缺点及适用范围. 相似文献
5.
针对无人机(UAV)仿真伺服系统的驱动模型,提出了一种将误差反传算法用于UAV仿真伺服系统在线学习设计的新方案.在该算法中采用了BP神经网络的基本思想,设计了两输入、单隐层、两输出在线学习策略,输入层分别为给定指令信号和反馈数字解算后的位置信号;隐含层单元数为12个;输出层设为2个输出单元,即经在线学习误差反传算法学习训练后的数字位置和速度,其中位置控制器采用自调节比例-积分-微分(PID)控制,速度通过数字/模拟(D/A)转换后传送到速度控制器,设定精度误差指标为0.05,训练样本数为30.用研制的UAV仿真伺服系统对UAV光纤陀螺传感器进行含实物半物理实时仿真实验,结果表明,该在线学习误差反传算法控制方案的UAV仿真伺服系统具有收敛性好、动态响应快、鲁棒性强的特点. 相似文献
6.
该文用非线性时间序列分析方法,对一般股市行情序列进行了拟合,指出可用逐段线性回归拟合趋势,用门发自回归模型拟合消除趋势后的平稳序列,通过对1997年4月22日至5月12日期间深圳股市行情预测值与实际值的对比,说明在正常状态(即无违规操作及无特殊政策出台)下,所建立的模型有较好的拟合效果,从而提供了一个行情预测的有效方法。 相似文献
7.
8.
为了解决时间序列数据的预测问题,传统ESN预测方法对关键参数的设置采取经验法和测试法,不能达到全局最优,因此,提出一种改进的ESN预测方法。该方法映射了关键参数的谱半径,设置优化目标,采用随机梯度下降法进行优化计算。实验结果表明,改进ESN方法的预测误差小,可以实现预测值对真实值的理想逼近。 相似文献
9.
混沌算法神经网络与含噪声时间序列的预测 总被引:6,自引:0,他引:6
在前馈神经网络连接权的动力学方程中引进一非线性反馈预后,网络在权空间具有混沌动力学行为:应用这种算法的神经网络对基于Mackey-Glass方程含噪声的时间序列进行在线预测,结果表明网络具有很好的预测性能。 相似文献
10.
在现有支持向量机(SVM)方法的基础上提出对预测误差进行同步预测的双重预测方法,利用预测到的误差对初步预测值进行校正以提高预测精度.针对误差序列非线性、非平稳以及系统动力信息不足的特点,将经验模态分解(EMD)和支持向量机(SVM)方法结合引入误差序列的预测中.对误差序列的预测分别运用初步训练误差和测试误差对预测集合的误差进行预测,将所得到的误差序列分解为若干固有模态分量(IMF),根据各个IMF不同尺度的特点,选择不同的参数对其进行预测,最终合成原始序列的误差预测值,将所预测到的误差与初步原始序列预测值结合,得到最终的预测值.仿真结果表明该方法能够很好地解决预测滞后性和拐点误差大的缺点,相对于普通的SVM预测方法具有更好的预测精度. 相似文献
11.
基于霍夫变换的基本原理,针对其在进行直线检测中存在的不足,利用误差扩散理论分析了在霍夫变换过程中的误差,研究了影响误差的因素.分析表明,直线的参数估计不仅和图像噪声有关,而且与直线的位置有关,直线到原点的距离越近,误差就越小,即对直线的检测精度就越高.提出了利用窗口移动的方法来寻求最优特征点和限制角度变换范围,结合最优特征点和误差扩散的理论,给出了一种改进的直线检测算法.在直线检测的精确性要求比较高的情况下,该算法能很好地满足要求. 相似文献
12.
为提高加权一阶局域模型的预测精度,提出一种改进型混沌时间序列预测方法.该方法用衰减系数和时间延迟修正向量距离公式,调节邻近点与中心点的相关性,同时,只用邻近点中与预测值相关性最大的分量进行线性拟合.利用该方法对Henon混沌时间序列进行预测的结果表明,衰减系数取最佳值时,相对于现有算法,该方法可以更精确地预测混沌时间序... 相似文献
13.
针对神经网络集成对个体差异性的要求 ,提出了集成网络间的结构差异度的概念 .在此基础上设计了一种基于反向选择的免疫算法 ,该算法可以在减小集成网络各自训练误差的同时保持网络间的结构差异度 ,从而提高神经网络集成的泛化能力 .同时证明了该算法对最优个体的收敛性 .将该方法应用于受噪声污染的非线性时间序列故障预报 ,根据预测误差可以方便准确地检测系统的缓变故障和突变故障 ,实现对微小故障的快速故障预报 ,降低误检率 .仿真结果证明了该方法的有效性 . 相似文献
14.
时间序列分析方法的研究 总被引:13,自引:0,他引:13
时间序列分析方法是建立变形测量预测模型的主要方法.本文就变形测量中用AR模型建立变形预测模型的参数估计问题以及模型阶次问题进行了探讨,并指出在样本观测值有限的条件下,宜采用最小二乘法及动态数据(DDS)方法建立动态变形的预测模型. 相似文献
15.
动态误差时间序列小波神经网络预测模型 总被引:1,自引:1,他引:0
基于现代误差修正技术,研究小波神经网络建立的动态测量误差预测模型,以进行误差修正,提高动态测量精度,避免了传统神经网络需要人为干预网络结构参数的不足。文章介绍了建模方法,重点对大轴圆度误差测量过程中的动态测量数据进行实例分析,结果表明,该模型预测精度高,具有重要的应用价值。 相似文献
16.
基于改进典型相关分析的混沌时间序列预测 总被引:1,自引:0,他引:1
典型相关分析是目前常用的研究两个变量集间相关性的统计方法.针对线性典型相关分析法不能揭示变量间非线性关系,因而不适用于混沌系统等问题,将核典型相关分析与径向基函数神经网络相结合,提出了一种改进的核典型相关分析方法以解决映射空间样本未知及逆矩阵求解困难等问题.首先利用两个径向基函数神经网络,通过训练使两个网络输出之间的相关系数达到最大,可同时得到两组典型相关变量.然后建立预测模型,对Lorenz混沌方程及大连月气温与降雨二变量混沌时间序列进行仿真,并与传统的线性回归预测方法进行比较,多组仿真结果证明了所述方法的有效性. 相似文献
17.
郭静波 《吉林大学学报(信息科学版)》1997,(1)
在对插值新息实时预报算法的稳健性进行试验仿真研究的基础上,提出了一种改进的算法——基于自适应梯度的插值新息预报算法,计算机仿真结果表明,该算法的稳定性优于原来的基本算法,更适用于实时预报系统 相似文献
18.
为了提高风速序列预测的可靠性,针对具有混沌特性的风速序列,构造了一种用于风速序列预测的联想网络。以风速序列的波动性作为相似性测度准则,构造联想网络的存储样本模式,根据存储模式中蕴含的关联信息完成网络的无监督学习,从而完成具有自相似性的风速序列的一步或多步预测分析。与传统前向型神经网络相比,该网络预测机理明确,预测结果唯一,且可一次给出多步预测结果。仿真实验结果表明,该网络的具有良好预测性能,适用于风速序列的动态预测。 相似文献
19.
郝继升 《延安大学学报(自然科学版)》2001,20(3):22-24,40
将一种关于一维输入的改进B样条网络学习算法推广到二维输入情形,并应用到一个非线性时间序列预测问题中,计算机仿真结果表明该算法比现有的B样条网络学习算法更有效。 相似文献
20.
基于小波分析法与滚动式时间序列法的风电场风速短期预测优化算法 总被引:4,自引:0,他引:4
为实现风电场风速的超前多步高精度预测,提出一种基于小波分析法与滚动式时间序列法混合建模的优化算法。该优化算法引入小波分析法对风电场实测非平稳风速序列进行分解重构计算,将非平稳性原始风速序列转化为多层较平稳分解风速序列,利用对传统时间序列分析法改进后的滚动式时间序列法对各分解层风速序列建立非平稳时序预测模型,并通过模型方程实现超前多步滚动式预测计算。仿真结果表明:该优化算法实现了风速的高精度短期多步预测,将传统时间序列分析法对应超前1步、3步、5步的预测精度分别提高了54.22%,26.44%和19.38%,其预测的平均相对误差分别为1.14%,3.06%和4.41%;优化算法具有较强的细分与自学习能力。 相似文献