首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
The photocatalytic degradation of a herbicide derivative, 2,4-dichlorophenoxy acetic acid (2,4-D, 1), has been investigated in aqueous suspensions of titanium dioxide. The degradation was studied by monitoring the change in substrate concentration employing UV spectroscopic analysis and decrease in Total Organic Carbon (TOC) content as a function of irradiation time in the presence of UV light source. The degradation kinetics was investigated under a variety of conditions, such as different types of TiO2, pH, catalyst and substrate concentrations. Higher photonic efficiencies were observed with Degussa P25 as compared with other photocatalysts. The degradation products were analysed by GC-MS and probable pathways for the formation of different products were proposed.  相似文献   

2.
The photocatalytic degradation of a herbicide derivative, 2,4-dichlorophenoxy acetic acid (2,4-D, 1), has been investigated in aqueous suspensions of titanium dioxide. The degradation was studied by monitoring the change in substrate concentration employing UV spectroscopic analysis and decrease in Total Organic Carbon (TOC) content as a function of irradiation time in the presence of UV light source. The degradation kinetics was investigated under a variety of conditions, such as different types of TiO2, pH, catalyst and substrate concentrations. Higher photonic efficiencies were observed with Degussa P25 as compared with other photocatalysts. The degradation products were analysed by GC-MS and probable pathways for the formation of different products were proposed.  相似文献   

3.
Differential pulse polarography (d.p.p.) is used to study the degradation of cephalexin. Hydrogen sulphide, evolved during the degradation of cephalexin solutions, was removed continuously in a stream of nitrogen and determined periodically. Other electroactive degradation products were observed by d.p.p. of the degraded sample solutions. The degradation mechanism is highly dependent on pH, the initial concentration of cephalexin, temperature, the particular buffer used, and the presence of dissolved oxygen. The formation and degradation of the diketopiperazine derivative formed by intramolecular aminolysis, particularly at neutral pH, can be followed by means of its polarographic peak at -0.9 V (pH 7.4). Approximately half the total sulphur originally present in cephalexin is liberated as hydrogen sulphide at pH 7.4 at 37°C. Increasing the degradation temperature to 80°C and sweeping out the hydrogen sulphide with nitrogen increases the yield of a major product which gives a peak at -1.26 V. At pH 8.5 (80°C. 100 μg cephalexin ml-1) the percentage of the sulphur evolved as hydrogen sulphide increases with time, and a peak appears at -0.96 V (probably 2-hydroxy-3-phenyl-6-methylpyrazine) which increases as the peak at -1.26 V becomes smaller. Other products formed under different conditions (concentration, pH, temperature) are reported. At pH 3 (80°C) only 8% conversion via intramolecular aminolysis and 5% evolution of total sulphur is indicated after four hours.  相似文献   

4.
《Analytical letters》2012,45(5):629-640
Abstract

A rapid and simple method for the determination of cephalexin, cephalothin sodium and cephradin without prior separation from their alkali-induced degradation products is presented. By measuring the values of the first and second derivative spectra at certain wavelengths, the concentration of the intact drug can be calculated directly without interference of degradation products. The method was proved using synthetic mixtures of the intact drugs with their degradation products, and its suitability to monitor the stability of the drugs was demonstrated.  相似文献   

5.
A mixture of five tetracycline (TC) derivatives: minocycline (MC), demeclocycline (DMCTC), doxycycline (DC), and sancycline (SC), as well as each TC derivative from its main degradation product were separated by capillary zone electrophoresis (CZE). The influence of the pH and the concentration and nature of the background electrolyte (BGE) on the separations was investigated. Ethylenediaminetetraacetic acid (EDTA; 1 mM) was used as additive in a 25 mM phosphate buffer (pH 2.3) because this BGE enabled the rapid separation of the TC derivatives and of each TC derivative from its respective degradation product in less than 6 min. After optimization of the separation conditions, the analytical characteristics of the method were investigated. The parameters involved were linearity, precision (repeatability and reproducibility), and limits of detection (LODs). LODs obtained for the five TC derivatives studied were about 3 microg/mL. Finally, the CZE method developed was applied to study the stability of TC derivatives and to analyze the TC derivative content in three different pharmaceutical preparations.  相似文献   

6.
Dihydralazine and hydrochlorothiazide were stored at high temperature and humidity, under UV/Vis light and different pH, as individual drugs and the mixture. Then, a sensitive and selective HPLC-UV method was developed for simultaneous determination of dihydralazine and hydrochlorothiazide in presence of their degradation products. Finally, the degradation products were characterized through LC-DAD and LC–MS methods. Dihydralazine was sensitive to high temperature and humidity, UV/Vis light and pH?≥?7. At the same time, it was resistant to acidic conditions. Hydrochlorothiazide was sensitive to high temperature and humidity, UV/Vis light and changes in pH. Its highest level of degradation was observed in 1 M HCl. Degradation of the drugs was higher when they were stressed in the mixture. In the case of dihydralazine, the percentage degradation was 5–15 times higher. What is more, dihydralazine became sensitive to acidic conditions. Hydrochlorothiazide was shown to be more sensitive to UV/Vis light and pH?>?4. Degradation of dihydralazine and hydrochlorothiazide followed first-order kinetics. The quickest degradation of dihydralazine was found to be in 1 M NaOH while of hydrochlorothiazide was in 1 M HCl (individual hydrochlorothiazide) or at pH 7–10 (hydrochlorothiazide in the mixture). A number of new degradation products were detected and some of them were identified by our LC-DAD and LC–MS methods. In the stressed individual samples, (phenylmethyl)hydrazine and 1,2,4-benzothiadiazine-7-sulfonamide 1,1-dioxide were observed for the first time. Interactions between dihydralazine and hydrochlorothiazide in the mixture were confirmed by additional degradation products, e.g., 2H-1,2,4-benzothiadiazine-7-sulfonamide 1,1,4-trioxide.  相似文献   

7.
A simple technique, involving two titrations with mercury(II) solutions, is described for the determination of penicillins and their degradation products. The first titration, at pH 4–5 on an untreated penicillin solution, gives the amount of degradation products; the second titration, on a hydrolysed solution at the same pH, gives the sum of the degradation products and penicillin degraded during the hydrolysis. Enzymic hydrolysis is superior to alkaline hydrolysis for penicillinase-sensitive penicillins. Enzyme-resistant penicillins should be hydrolysed with alkali at optimum conditions, e.g. for cloxacillin at pH 13.5 for 5 min. A standard deviation of less than 0.5 % was obtained for the penicillins investigated. The method is absolute; calibration with standard penicillin is not necessary.  相似文献   

8.
A rapid, specific, and reliable isocratic LC–MS/MS method has been developed and validated for the identification and characterization of the stressed degradation products of Entecavir (ETV). ETV, an antiviral drug, was subjected to hydrolysis (acidic, alkaline, and neutral), oxidation, photolysis and thermal stress, as per the international conference on harmonization specified conditions. The drug showed extensive degradation under oxidative and acid hydrolysis stress conditions. However, it was stable to thermal, acidic, neutral, and photolysis stress conditions. A total of five degradation products were observed and the chromatographic separation of the drug and its degradation products were achieved on a Waters Symmetry C18 (250 mm × 4.6 mm, id, 5 μm) column using 20 mM ammonium acetate (pH 3)/acetonitrile (50:50, v/v) as a mobile phase. The degradation products were characterized by LC–MS/MS and its fragmentation pathways were proposed. The LC–MS method was validated with respect to specificity, linearity, accuracy, and precision. No previous reports were found in the literature regarding the degradation behavior of ETV.  相似文献   

9.
The degradation of flavonol glycosides extracted from Ginkgo biloba was performed under different conditions and the degraded products were determined by reversed-phase high performance liquid chromatography (RP-HPLC) method. Four stress conditions including acid(0.1 mol/L HCl), base(0.1 mol/L NaOH), temperature (70 ℃) and oxidation(0.03% H2O2, volume fraction) were used for the forced degradation studies. The pH stabilities of the flavonol glycosides were determined in phosphate buffers of varying pH values from 4.5 to 7.4. The degradation rate constants and half-life of three Ginkgo flavonol aglycones(quercetin, kaempferol and isorhamnetin) which represent Ginkgo flavonol glycosides were calculated in forced degradation and pH-stability studies of them. The results indicate that the three substances were more stable when incubated under acid condition and showed pH-dependent stability. The degradation was observed to follow first-order kinetics in all degradation studies. The stability results could provide important bases on development, preparation and storage of products of Ginkgo biloba extract and should be significantly considered during the further formulation development.  相似文献   

10.
The definite structure and chemical stability of a new glucoside of L-ascorbic acid (AA) which was enzymatically glucosylated with rat intestinal and rice seed alpha-glucosidases were reported. The stability of this AA derivative in water under aerobic conditions was proved by its remarkable resistance against enhanced oxidative degradation by heat, Cu2+ ion or ascorbate oxidase, and it was found to have no reducing activity toward radicals. These properties were obviously distinguishable from those of AA. This glucoside was effectively hydrolyzed by alpha-glucosidases which possessed the ability to synthesize itself, resulting in the liberation of AA activity. The conjugate was composed of equimoles of AA and glucose. Nuclear magnetic resonance spectra, mass spectra, pH profiles of ultraviolet spectra and pK(a) value of 3.10 supported the coupling of alpha-glucose to the 2-position of AA. From these results, its structure was assigned 2-O-alpha-D-glucopyranosyl-L-ascorbic acid, being distinct from 6-O-alpha-D-glucopyranosyl-L-ascorbic acid formed with Aspergillus niger alpha-glucosidase. These findings indicate that the 2-O-glucoside formed by regioselective transglucosylation withstands oxidative degradation even in aqueous solutions and it can be used as an available active AA source for multicomponent liquid products.  相似文献   

11.
Lercanidipine in ethanol-0.04M Britton-Robinson buffer (20 + 80) gives an irreversible anodic response on a glassy carbon electrode in a broad pH range (2-12) that depends on pH. This signal can be attributed to oxidation of the 1,4-dihydropyridine ring to give the corresponding pyridine derivative. For analytical purposes, differential pulse voltammetry at pH 4 was selected. Under these conditions, good values of both within- and interday reproducibility were obtained, with coefficient of variation (CV) values of 1.56 and 1.70%, respectively, for 10 successive runs. For quantitation, the calibration curve method was used for lercanidipine concentrations ranging from 1 x 10(-5) to 1 x 10(-4) M. The detection and quantitation limits were 1.39 x 10(-5) and 1.49 x 10(-5), respectively. A liquid chromatographic method with electrochemical detection was used for comparison. The voltammetric method showed good selectivity with respect to both excipients and degradation products. The recovery study exhibited a CV of 0.94% and an average recovery of 98.3%, and it was not necessary to treat the sample before the analysis. The method was successfully applied to the individual tablet assay of lercanidipine in commercial tablets.  相似文献   

12.
The present study aimed to separate, identify, and characterise the degradation products formed when mavacamten is exposed to stress degradation as well as the stability of the drug in various environments and also to understand its degradation chemistry. Prediction of in silico toxicity and mutagenicity was aimed at the observed degradation products. Stress degradation along with stability studies and degradation kinetics were performed on mavacamten, and separation of degradation products was carried out by high-performance liquid chromatography. Tandem mass spectrometry studies were executed to characterise the structures of degradation products using product ion fragments. Orthogonally, nuclear magnetic resonance experiments were conducted to elucidate the structures having ambiguity in characterising them. Deductive Estimation of Risk from Existing Knowledge and Structure Activity Relationship Analysis using Hypotheses software were used to establish in silico toxicity and mutagenic profiles of mavacamten and its degradation products. Two degradation products of mavacamten found in acidic hydrolytic stress conditions were separated, identified, characterised, and proposed as 1-isopropylpyrimidine-2,4,6(1H,3H,5H)-trione and 1-phenylethanamine. Mavacamten was found to be stable under different pH and gastrointestinal conditions. The degradation kinetics of mavacamten under 1 N acidic condition followed zero-order kinetics, and it was degraded completely within 6 h. In silico toxicity and mutagenicity studies revealed that 1-phenylethanamine can be a skin sensitiser. A high-performance liquid chromatography method was developed for the separation of degradation products of mavacamten and characterised by liquid chromatography–tandem mass spectrometry and nuclear magnetic resonance. During the manufacturing and storage of drug product, precautions need to be taken when dealing with acidic solutions as the drug is prone to hydrolysis in acidic conditions. The formation of 1-phenylethanamine under these conditions is to be monitored as it is a skin sensitiser.  相似文献   

13.
Fenspiride hydrochloride (FNS) is used in treating chronic inflammatory diseases, most commonly as a liquid oral solution. FNS produces degradation products along with fenspiride N‐oxide (FNO) and 1‐phenylethyl‐4‐hydroxy‐4‐aminomethyl piperidine hydrochloride (PHAP). We aimed to develop and validate a chromatographic method in order to identify the main degradation products in the presence of other compounds from a liquid preparation. The method used a dual gradient using two buffer solutions: the first with pH 4.5 (buffer 1, pH 4.5–MeOH 90:10%, v/v) and the second with pH 2.9 (buffer 2, pH 2.9–acetronitrile–methanol, 65:15:10%, v/v/v). As mentioned, there was a modification of the organic mixture, starting with 10% methanol and ending with a mixture of acetonitrile–methanol (15:10%, v/v). The flow‐rate was 1.5 mL/min. According to the elution program, experimental conditions started with 100% solution S1, which decreased to 0% and, simultaneously, solution S2 increased to 100% during the first 10 min and was maintained for a further 5 min. After 15 min, initial conditions were re‐established. The linearity interval was 0.5–2 μg/mL and the minimum correlation coefficient was 0.999. The recovery factor was 100.47–103.17% and the limit of quantification was 0.19–0.332 μg/mL. Intra‐day maximum precision was 4.08% for FNS and 2.65% for PHAP. This double‐gradient mobile phase produced good specificity in relation to the degradation products of FNS and other constituents of the oral liquid formulation. Forced degradation studies revealed other related substances that were confirmed in mass balance analyses. Degradation products were confirmed in acidic, basic and oxidative media.  相似文献   

14.
Degradable synthetic crosslinking is a versatile strategy to harness nanomaterials against disassembly in a complex physiological medium prompted by dilution effects or competitive interaction. In particular, chemical bonds such as ketals that are stable at physiological conditions but are cleaved in response to disease‐mediated or intracellular conditions (e.g., a mildly acidic pH) are of great relevance for biomedical applications. Despite the range of spectroscopic or chromatographic analyses methods that allow chemical degradation in solution to be assessed, it is much less straightforward to interrogate synthetic nanomaterials for their degradation state when located inside a living organism. We demonstrate a method based on FRET analysis to monitor intracellular disassembly of block‐copolymer‐derived nanoparticles engineered with a FRET couple on separate polymer chains, which after self‐assembly are covalently crosslinked with a pH‐sensitive ketal‐containing crosslinker.  相似文献   

15.

CE-MS was employed to identify two unknown degradation products of the model tripeptide Phe-α-Asp-Gly heated at 80 °C in aqueous solution at pH 7.4. Both compounds displayed essentially identical mass spectra indicating the presence of peptide diastereomers. The [M + H]+-ion at m/z 338 suggested a tripeptide composed of the amino acids Phe, Gly and Asp. The fragmentation pattern indicated that Phe was not located at the N-terminus. Subsequently, the linear peptide α-Asp-Phe-Gly and the branched peptide Asp(Gly)-Phe were synthesized and analyzed by CE-MS. The mass spectrum of synthetic α-Asp-Phe-Gly was identical to that of the unknown compounds confirming the structure of the degradation products. Asp(Gly)-Phe displayed a complex fragmentation pattern. In conclusion, amino acid sequence inversion represents another degradation pathway of Phe-α-Asp-Gly at pH 7.4 besides known reactions including isomerization, enantiomerization, cyclization to diketopiperazine derivatives and backbone hydrolysis. The mechanism of the rearrangement of the amino acid sequence is proposed to proceed via an aza-bridged intermediate.

  相似文献   

16.
Organometallic complexes are useful tools in synthetic organic chemistry. We investigated a novel synthetic method for ring construction using organometallic complexes and synthesized natural products and biologically active substances using these methods. Metalacycles formed from an early transition metal and diene, enyne, and diyne are stable under the reaction conditions and they are easily converted into compounds with functional groups by the addition of various agents. We have developed a novel synthetic method of heterocycles from enyne and diene using Cp2ZrBu2. The total syntheses of (-)-dendrobine, (+/-)-mecembrane, and (+/-)-mecembrine were achieved using this procedure. To synthesize these natural products as a chiral form, a novel palladium-catalyzed asymmetric allylic amination was developed, and chiral 2-arylcyclohexenylamine derivatives were synthesized. From these compounds, the total syntheses of (-)-mesembrane, (-)-mesembrine, (+)-crinamine, (-)-haemanthidine, and (+)-pretazetine were achieved. By further development of this procedure, a chiral 2-siloxymethylcyclohexenylamine derivative could be synthesized and the novel synthesis of indole derivatives was developed from this compound. From this indole derivative, (-)-tsubifoline and (-)-strychnine were synthesized.  相似文献   

17.
Ragno G  Vetuschi C  Risoli A  Ioele G 《Talanta》2003,59(2):375-382
A multicomponent UV spectrophotometric method using a classical least-squares (CLS) algorithm has been developed for the quantitative determination of 1,4-dihydropyridine (DHP) calcium antagonists and respective photoproducts. The procedure was optimized by defining a fractionation scheme for selecting the more useful wavelength ranges to be used in the calibration model. The method is potentially able to be extended to the other drugs of the same family. The recovery values from synthetic mixtures and commercial formulations were verified to be 99.09 and 97.85% for drug parents and degradation products, respectively. The sensitivity for the photoproducts determination was found to be below 0.8%. The results obtained from laboratory mixtures and commercial formulations were compared with those provided by UV derivative spectrophotometry.  相似文献   

18.
Tapentadol, a centrally acting analgesic was subjected to hydrolysis (acidic, alkaline, and neutral), oxidation, photolysis, humidity, and thermal stress conditions as per International Conference on Harmonization prescribed guidelines. Tapentadol was found susceptible to oxidative stress that produced two major degradation products DP-I and DP-II. However, it was stable to hydrolysis, photolysis, and thermal stress conditions. A simple, sensitive, and accurate high-performance liquid chromatography stability-indicating assay method (liquid chromatography–mass spectrometer compatible) was developed and validated for identification and characterization of stressed degradation products of Tapentadol. The chromatographic separation of the drug and its degradation products were achieved on Inertsil ODS, C18 (250 × 4.6 mm, i.d., 5 µm) column using a 12.5 mM aqueous ammonium acetate buffer (with 0.2% triethyl amine and final pH of buffer was adjusted to 3.60 with glacial acetic acid): acetonitrile (75:25, v/v) as a mobile phase. The degradation products were characterized by liquid chromatography mass spectrometry and subsequently its fragmentation pathway as well as plausible mechanism for generation of degradation products was also proposed. The stability indicating high-performance liquid chromatographic method was validated with respect to linearity, precision, and accuracy.  相似文献   

19.
Pyridazine derivatives are privileged structures because of their potential biological and optical properties. Traditional synthetic methods usually require acid or base as a catalyst under reflux conditions with reaction times ranging from hours to a few days or require microwave assistance to induce the reaction. Herein, this work presents the accelerated synthesis of a pyridazine derivative, 2-phenyl-2,3-dihydrophthalazine-1,4-dione (PDHP), in electrosprayed microdroplets containing an equimolar mixture of phenyl hydrazine and phthalic anhydride or phthalic acid. This reaction occurred on the submillisecond timescale with good yield (over 90 % with the choice of solvent) without using an external catalyst at room temperature. In sharp contrast to the bulk reaction of obtaining a mixture of two products, the reaction in confined microdroplets yields only the important six-membered heterocyclic product PDHP. Results indicated that surface reactions in microdroplets with low pH values cause selectivity, acceleration, and high yields.  相似文献   

20.
Ondansetron hydrochloride was subjected to forced degradation studies under various conditions of hydrolysis (acidic, basic, and neutral), oxidation, photolysis, and thermal as prescribed by International Conference on Harmonisation guideline Q1A (R2). A simple, selective, precise, and accurate high‐performance liquid chromatography method was developed on a Waters Xterra C18 (150 × 4.6 mm id, 3.5 μm) column using 10 mM ammonium formate (pH 3.0)/methanol as a mobile phase in gradient elution mode at a flow rate of 0.6 mL/min. The method was extended to liquid chromatography quadrupole time‐of‐flight tandem mass spectrometry for identification and structural characterization of stress degradation products of ondansetron. The drug showed significant degradation in base hydrolytic and photolytic stress conditions in the liquid state, while it was found to be stable in neutral, acidic, thermal, and oxidative stress conditions. A total of five degradation products were characterized and most probable mechanisms for the formation of degradation products have been proposed on the basis of a comparison of the fragmentation of the [M + H]+ ions of the drug and its degradation products. Finally, the developed method was validated in terms of specificity, linearity, accuracy, precision, and robustness as per International Conference on Harmonisation guideline Q2 (R1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号