首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The subsecond, temporal, vesicular exocytosis is ubiquitous, but difficult detecting in communication mechanisms of cells. A microelectrode array(MEA), fabricated by MEMS technology, was applied successfully for real-time monitoring of quantal exocytosis from single pheochromocytoma(PC12) cell.The developed MEA was evaluated by dopamine(DA) using electrochemical methods and the results revealed that the sensitivity of DA was improved to 12659.24 μA L mmol ~(-1)cm~(-2). The modified MEA was used to detect in vitro vesicular exocytosis of DA from single PC12 cells stimulated by concentrated100 mmol L~(-1)K~+cell solution. A total of 592 spikes were measured and analyzed by three parameters and the statistical results revealed the population of each parameter was an approximate Gaussian distribution, and on average, 1.31×10~6 ±9.25×10~4 oxidizable molecules were released in each quantal exocytosis. In addition, results also indicate that a single PC12 cell probably releases the spikes with T ranging from 25.6 ms to 35.4 ms corresponding to I_(max)ranging from 45.6 pA to 65.2 pA. The devices, including a homemade computer interface and the MEA modified with polymer film, provides a new means for further research on the neural, intercellular, communication mechanism.  相似文献   

2.
The modification of electrodes with the tripeptide Gly-Gly-His for the detection of copper in water samples is described in detail. The tripeptide modified electrode was prepared by first self-assembling 3-mercaptopropionic acid (MPA) onto the gold electrode followed by covalent attachment of the tripeptide to the self-assembled monolayer using carbodiimide coupling. The electrodes were characterized using electrochemistry, a newly developed mass-spectrometry method and quantum mechanical calculations. The mass spectrometry confirmed the modification to proceed as expected with peptide bonds formed between the carboxylic acids of the MPA and the terminal amine of the peptide. Electrochemical measurements indicated that approximately half the MPA molecules in a SAM are modified with the peptide. The peptide modified electrodes exhibited high sensitivity to copper which is attributed to the stable 4N coordinate complex the peptide formed around the metal ion to give copper the preferred tetragonal coordination. The formation of a 4 coordinate complex was predicted using quantum mechanical calculation and confirmed using mass spectrometry. The adsorption of the copper to the peptide modified electrode was consistent with a Langmuir isotherm with a binding constant of (8.1 +/- 0.4) 10(10) M(-1) at 25 degrees C.  相似文献   

3.
Amperometric immunosensors for the detection and quantification of S. aureus using MPA self‐assembled monolayer modified electrodes for the immobilization of the immunoreagents are reported. Two different immunosensor configurations were compared. A competitive mode, in which protein A‐bearing S. aureus cells and antiRbIgG labeled with horseradish peroxidase (HRP) compete for the binding sites of RbIgG immobilized onto the 3‐mercaptopropionic acid (MPA) modified electrode, was evaluated. Moreover, a sandwich configuration in which S. aureus cells were immobilized onto the MPA SAM, and RbIgG and antiRbIgG labeled with HRP were further linked to the electrode surface, was also tested. In both cases, TTF was used as the redox mediator of the HRP reaction with H2O2, and it was co‐immobilized onto the MPA‐modified gold electrode. After optimization of the working variables for both configurations, the analytical performance of the amperometric measurements carried out at 0.00 V (vs. Ag/AgCl) showed that the competitive immunosensor exhibited a lower limit of detection (1.6×105 S. aureus cells mL?1), as well as a better repeatability and reproducibility of the measurements.  相似文献   

4.
We fabricated a micro-fluidic device for the highly selective detection of the histamine released from rat basophilic leukemia (RBL) 2H3 cells. The device has two thin layer flow channels, each with one working electrode. One electrode was modified with Os-polyvinylpyridine based mediator containing horseradish peroxidase (Os-gel-HRP) and histamine oxidase (HAOx), the other was modified with Os-gel-HRP without any HAOx. We employed the device for differential measurement by using the HAOx modified electrode for detection and the unmodified electrode as a reference. The detection limit was greatly improved from 190 to 25 nM since the baseline noise level was suppressed. We used differential measurement to observe the histamine released from RBL-2H3 cells when stimulated with dinitrophenylated bovine serum albumin (DNP-BSA) as an antigen. We injected 5 microM of histamine solution into our device and it remained stable for more than 8 h.  相似文献   

5.
Single photon burst techniques were used to detect double-stranded DNA molecules in poly(methylmethacrylate) (PM MA) and polycarbonate (PC) microfluidic devices. A confocal epi-illumination detection system was constructed to monitor the fluorescence signature from single DNA molecules that were multiply labeled with the mono-intercalating dye, TOPRO-5, which possessed an absorption maximum at 765 nm allowing excitation with a solid-state diode laser and fluorescence monitoring in the near-infrared (IR). Near-IR excitation minimized autofluorescence produced from the polymer substrate, which was found to be significantly greater when excitation was provided in the visible range (488 nm). A solution containing lambda-DNA (48.5 kbp) was electrokinetically transported through the microfluidic devices at different applied voltages and solution pH values to investigate the effects of polymer substrate on the transport rate and detection efficiency of single molecular events. By applying an autocorrelation analysis to the data, we were able to obtain the molecular transit time of the individual molecules as they passed through the 7 microm laser beam. It was observed that the applied voltage for both devices affected the transport rate. However, solution pH did not alter the transit time for PM MA-based devices since the electroosmotic flow of PMMA was independent of solution pH. In addition, efforts were directed toward optimizing the sampling efficiency (number of molecules passing through the probe volume) by using either hydrodynamically focused flows from a sheath generated by electrokinetic pumping from side channels or reducing the channel width of the microfluidic device. Due to the low electroosmotic flows generated by both PMMA and PC, tight focusing of the sample stream was not possible. However, in PMMA devices, flow gating was observed by applying field strengths > -120 V/cm to the sheath flow channels. By narrowing the microchannel width, the number of molecular events detected per unit time was found to be four times higher in channels with 10 microm widths compared to those of 50 microm, indicating improved sampling efficiency for the narrower channels without significantly deteriorating detection efficiency. Attempts were made to do single molecule sizing of lambda-DNA, M13 (7.2 kbp) and pUC19 (2.7 kbp) using photon burst detection. While the average number of photons for each DNA type were different, the standard deviations were large due to the Gaussian intensity profile of the excitation beam. To demonstrate the sensitivity of single molecule analysis in the near-IR using polymer microfluidic devices, the near-IR chromophore, NN382, wasanalyzed using ourconfocal imager. A detection efficiency of 94% for single NN382 molecules was observed in the PC devices.  相似文献   

6.
针对已有的微米及纳米电化学监测单囊泡、单突触及突触间隙释放, 扫描电化学显微镜用于单细胞释放前后形貌变化的定量分析, 微流控与阵列电极集成芯片, 用于细胞灌注培养及监测释放化学信号分子的研究工作进行了评述. 同时, 对近几年此领域的前沿研究进行了简要评论, 并对其未来发展提出了一些新的观点.  相似文献   

7.
Recently, the development of electrochemical biosensors as part of microfluidic devices has garnered a great deal of attention because of the small instrument size and portability afforded by the integration of electrochemistry in microfluidic systems. Electrode fabrication, however, has proven to be a major obstacle in the field. Here, an alternative method to create integrated, low cost, robust, patternable carbon paste electrodes (CPEs) for microfluidic devices is presented. The new CPEs are composed of graphite powder and a binder consisting of a mixture of poly(dimethylsiloxane) (PDMS) and mineral oil. The electrodes are made by filling channels molded in previously cross-linked PDMS using a method analogous to screen printing. The optimal binder composition was investigated to obtain electrodes that were physically robust and performed well electrochemically. After studying the basic electrochemistry, the PDMS-oil CPEs were modified with multi-walled carbon nanotubes (MWCNT) and cobalt phthalocyanine (CoPC) for the detection of catecholamines and thiols, respectively, to demonstrate the ease of electrode chemical modification. Significant improvement of analyte signal detection was observed from both types of modified CPEs. A nearly 2-fold improvement in the electrochemical signal for 100 μM dithiothreitol (DTT) was observed when using a CoPC modified electrode (4.0 ± 0.2 nA (n = 3) versus 2.5 ± 0.2 nA (n = 3)). The improvement in signal was even more pronounced when looking at catecholamines, namely dopamine, using MWCNT modified CPEs. In this case, an order of magnitude improvement in limit of detection was observed for dopamine when using the MWCNT modified CPEs (50 nM versus 500 nM). CoPC modified CPEs were successfully used to detect thiols in red blood cell lysate while MWCNT modified CPEs were used to monitor temporal changes in catecholamine release from PC12 cells following stimulation with potassium.  相似文献   

8.
《Analytical letters》2012,45(11):2151-2160
Abstract

The electrochemical behavior of Cu(II) was investigated on three‐dimensional 3‐mercaptopropionic acid (MPA) assembled on gold nanoparticle‐modified glassy carbon (GNP/GC) electrode. The results demonstrated that the MPA monolayer inhibited the charging current while promoted the response of accumulated Cu(II) on GNP/GC electrode. The effects of pH, scan rate, and accumulation time on the voltammetric behavior of Cu(II) on the MPA/GNP/GC electrode were studied. The MPA modified electrode presented a voltammetric response linearly proportional to the Cu(II) concentration from 0.1 µg/l to 100 µg/l, with a detection limit of 3.2 ng/l. Moreover, this electrode was successfully applied to the determination of Cu(II) in tap water.  相似文献   

9.
Electrogenerated chemiluminescence (ECL) for DNA hybridization detection is demonstrated based on DNA that was self-assembled onto a bare gold electrode and onto a gold nanoparticles modified gold electrode. A ruthenium complex served as an ECL tag. Gold nanoparticles were self-assembled on a gold electrode associated with a 1,6-hexanedithiol monolayer. The surface density of single stranded DNA (ssDNA) on the gold nanoparticle modified gold electrode was 4.8?×?1014 molecules per square centimeter which was 12-fold higher than that on the bare gold electrode. Hybridization was induced by exposure of the target ssDNA gold electrode to the solution of ECL probe consisting of complementary ssDNA tagged with ruthenium complex. The detection limit of target ssDNA on a gold nanoparticle modified gold electrode (6.7?×?10?12 mol L?1) is much lower than that on a bare gold electrode (1.2?×?10?10 mol L?1). The method has been applied to the detection of the DNA sequence related to cystic fibrosis. This work demonstrates that employment of gold nanoparticles self-assembled on a gold electrode is a promising strategy for the enhancement of the sensitivity of ECL detection of DNA.  相似文献   

10.
Woods LA  Powell PR  Paxon TL  Ewing AG 《Electroanalysis》2005,17(13):1192-1197
Capillary electrophoresis in 770 nanometer inner diameter capillaries coupled to electrochemical detection with an etched electrode matching an etched capillary (etched electrochemical detection) has been used with ultrasmall sampling to inject subcellular samples from intact single mammalian cells. Separations of cytoplasmic samples taken from rat pheochromocytoma cells have been achieved. As little as 8% of the total volume of a single cell has been sampled and analyzed. Dopamine has been identified and quantified in these PC12 cells using this technique. The average cytoplasmic level of dopamine in rat pheochromocytoma cells has been determined to be 240 ± 60 μM. The use of electrophoresis in 770 nanometer inner diameter capillaries with electrochemical detection to monitor cytoplasmic neurotransmitters at the single cell level can provide information about complex cellular functions such as neurotransmitter storage and synthesis.  相似文献   

11.
《Electroanalysis》2017,29(10):2365-2376
Understanding how the brain works requires developing advanced tools that allow measurement of bioelectrical and biochemical signals, including how they propagate between neurons. The introduction of nanomaterials as electrode materials has improved the impedance and sensitivity of microelectrode arrays (MEAs), allowing high quality recordings of single cells in situ using electrode diameters of ≤20 μm. MEAs also have the potential to measure electroactive biological molecules in situ, such as dopamine, a neurotransmitter in the nervous system. Thus, this work focused on fabricating a functionalised carbon nanotube (CNT)‐based MEA to demonstrate its potential for future measurement of small signals generated from excitable cells. To this end, the functionalised CNT MEA has recorded one of the lowest electrochemical interfacial impedances available in the literature, 2.8±0.2 kΩ, for an electrode of its geometric surface area. Electrochemical detection of dopamine revealed again one of the best sensitivity values per area available in the literature, 9.48 μA μM−1 mm−2. Additionally, a limit of detection of 7 nM was recorded for dopamine using the functionalised CNT MEA, with selectivity against common electrochemical interferents such as ascorbic acid. These results indicate improvement beyond currently available MEAs, along with the feasibility of using these devices for multi‐site detection of physiologically relevant electroactive biomolecules.  相似文献   

12.
The quantification of vesicular transmitter content is important for studying the mechanisms of neurotransmission and malfunction in disease, and yet it is incredibly difficult to measure the tiny amounts of neurotransmitters in the attoliter volume of a single vesicle, especially in the cell environment. We introduce a novel method, intracellular vesicle electrochemical cytometry. A nanotip conical carbon‐fiber microelectrode was used to electrochemically measure the total content of electroactive neurotransmitters in individual nanoscale vesicles in single PC12 cells as these vesicles lysed on the electrode inside the living cell. The results demonstrate that only a fraction of the quantal neurotransmitter content is released during exocytosis. These data support the intriguing hypothesis that the vesicle does not open all the way during the normal exocytosis process, thus resulting in incomplete expulsion of the vesicular contents.  相似文献   

13.
This work presents a simple, fast and low‐cost method for the simultaneous determination of three drugs by flow‐injection analysis with multiple‐pulse amperometric (MPA) detection using a wall‐jet flow cell with a boron‐doped diamond electrode. The amperometric determination of caffeine (CF), ibuprofen (IB) and paracetamol (PC) was performed by the application of a four‐potential waveform using the MPA technique. PC is oxidized at E1 (1.20 V/70 ms) and thus selectively detected; PC and CF are oxidized at E2 (1.49 V/40 ms); PC, CF and IB are oxidized at E3 (1.70 V/70 ms); and E4 (1.80 V/100 ms) is applied for electrode cleaning. The subtraction of currents obtained at the different potentials did not provide accurate determinations of CF and IB, thus it was required to investigate correction factors to determine CF and IB without the interference from PC and CF using the respective amperometric signals obtained at E2 and E3. The proposed method was successfully applied for the determination of three drugs in pharmaceutical samples with low generation of residues and a high analytical frequency (150 h?1) in comparison with HPLC‐DAD method.  相似文献   

14.
Li MW  Martin RS 《The Analyst》2008,133(10):1358-1366
In this paper, we describe the fabrication and evaluation of a multilayer microchip device that can be used to quantitatively measure the amount of catecholamines released from PC 12 cells immobilized within the same device. This approach allows immobilized cells to be stimulated on-chip and, through rapid actuation of integrated microvalves, the products released from the cells are repeatedly injected into the electrophoresis portion of the microchip, where the analytes are separated based upon mass and charge and detected through post-column derivatization and fluorescence detection. Following optimization of the post-column derivatization detection scheme (using naphthalene-2,3-dicarboxaldehyde and 2-beta-mercaptoethanol), off-chip cell stimulation experiments were performed to demonstrate the ability of this device to detect dopamine from a population of PC 12 cells. The final 3-dimensional device that integrates an immobilized PC 12 cell reactor with the bilayer continuous flow sampling/electrophoresis microchip was used to continuously monitor the on-chip stimulated release of dopamine from PC 12 cells. Similar dopamine release was seen when stimulating on-chip versus off-chip yet the on-chip immobilization studies could be carried out with 500 times fewer cells in a much reduced volume. While this paper is focused on PC 12 cells and neurotransmitter analysis, the final device is a general analytical tool that is amenable to the immobilization of a variety of cell lines and analysis of various released analytes by electrophoretic means.  相似文献   

15.
This paper reported the enzymatic deposition of Au nanoparticles (AuNPs) on the designed 3-mercapto-propionic acid/glucose oxidase/chitosan (MPA/GOD/Chit) modified glassy carbon electrode and its application in glucose detection. Chit served as GOD immobilization matrix and interacted with MPA through electrostatic attraction. AuNPs, without nano-seeds presented on the electrode surface, was produced through the glucose oxidase catalyzed oxidation of glucose. The mechanism of production of AuNPs was confirmed to be that enzymatic reaction products H(2)O(2) in the solution reduce gold complex to AuNPs. The characterizations of the electrode modified after each assembly step was investigated by cyclic voltammetry and electrochemical impedance spectroscopy. Scanning electron microscopy showed the average particle size of the AuNPs is 40nm with a narrow particle size distribution. The content of AuNPs on the electrode surfaces was measured by differential pulse stripping voltammetry. The electrochemical signals on voltammogram showed a linear increase with the glucose concentration in the range of 0.010-0.12mM with a detection limit of 4μM. This provided a method to the determination of glucose.  相似文献   

16.
Present work demonstrates the utilization of surface modified polycarbonate (PC) membrane as solid phase and antibody conjugated CdSe/ZnS quantum dots (QDs) as fluorescent label for the sensitive and selective detection of Salmonella typhi (S. typhi) in water in a period of 2.5 h. PC membrane was surface modified with glycine and activated by EDC/NHS for immobilization of S. typhi specific IgG. Antibody immobilized porous PC membrane was incubated with bacteria contaminated water for immunocapturing of S. typhi. Antibody conjugated QDs were also prepared by using carbodiimide chemistry. Both modified PC membrane and quantum dots were characterized by using various modern analytical tools. It was estimated that 1.95 molecules of QDs were successfully bio-conjugated per unit of IgG. PC membrane with captured bacteria was incubated with prepared IgG conjugated QDs for the formation of sandwich complex. Analysis of the regions of interest (ROI) in fluorescent micrographs showed that newly developed method based on PC and fluorescent QDs has 100 times higher detection sensitivity (100 cells/mL) as compared with detection using conventional dye (FITC) based methods.  相似文献   

17.
We report a functionalisation strategy which is able to generate Ricinus communis agglutinin I (RCA 120) modified PMMA microfluidic device for binding and culturing living cells. The functionalisation is achieved by standard amine-aldehyde (Schiff base) reaction through the cross-linker, glutaraldehyde. To prove the ability of the RCA 120 modified PMMA surface, the PC 12 cell line (rat pheochromocytoma cells) has been captured and cultured by the microfluidic device. In the presence of tunicamycin, the dose/time-dependence on decreasing of binding affinity of RCA 120 modified device with PC 12 cell is also observed. The experimental results demonstrate that the lectin-functionalized microfluidic device can be employed as efficient cell culturing platform, and has a great promise of being used as a powerful tool for monitoring the interaction of drug with living cell.  相似文献   

18.
In this work a new electrochemical sensor based on an Ag-doped zeolite-expanded graphite-epoxy composite electrode (AgZEGE) was evaluated as a novel alternative for the simultaneous quantitative determination of nitrate and nitrite in aqueous solutions. Cyclic voltammetry was used to characterize the electrochemical behavior of the electrode in the presence of individual or mixtures of nitrate and nitrite anions in 0.1 M Na2SO4 supporting electrolyte. Linear dependences of current versus nitrate and nitrite concentrations were obtained for the concentration ranges of 1-10 mM for nitrate and 0.1-1 mM for nitrite using cyclic voltammetry (CV), chronoamperometry (CA), and multiple-pulsed amperometry (MPA) procedures. The comparative assessment of the electrochemical behavior of the individual anions and mixtures of anions on this modified electrode allowed determining the working conditions for the simultaneous detection of the nitrite and nitrate anions. Applying MPA allowed enhancement of the sensitivity for direct and indirect nitrate detection and also for nitrite detection. The proposed sensor was applied in tap water samples spiked with known nitrate and nitrite concentrations and the results were in agreement with those obtained by a comparative spectrophotometric method. This work demonstrates that using multiple-pulse amperometry with the Ag-doped zeolite-expanded graphite-epoxy composite electrode provides a real opportunity for the simultaneous detection of nitrite and nitrate in aqueous solutions.  相似文献   

19.
A single walled carbon nanotube-chitosan (SWCNT-chitosan) modified disposable pencil graphite electrode (PGE) was used in this study for the electrochemical detection of Vitamin B(12). Electrochemical behaviors of SWCNT-chitosan PGE and chitosan modified PGE were compared by using cyclic voltammetry (CV), square-wave voltammetry (SWV) and electrochemical impedance spectroscopy (EIS) techniques. SWCNT-chitosan modified electrode was also used for the quantification of Vitamin B(12) in pharmaceutical products. The results show that this electrode system is suitable for sensitive Vitamin B(12) analysis giving good recovery results. The surface morphologies of the SWCNT-chitosan PGE, chitosan modified PGE and unmodified PGE were characterized by using scanning electron microscopy (SEM).  相似文献   

20.
A novel hydrogen peroxide (H2O2) sensor was fabricated by using a submonolayer of 3‐mercaptopropionic acid (3‐MPA) adsorbed on a polycrystalline gold electrode further reacted with poly(amidoamine) (PAMAM) dendrimer (generation 4.0) to obtain a film on which Prussian Blue (PB) was later coordinated to afford a mixed and stable electrocatalytic layer for H2O2 reduction. On the basis of the electrochemical behaviors, atomic force microscopy (AFM) and X‐ray photoelectron spectra (XPS), it is suggested that the PB molecules are located within the dendritic structure of the surface attached PAMAM dendrimers. It was found that the PB/PAMAM/3‐MPA/Au modified electrode showed an excellent electrocatalytic activity for H2O2 reduction. The effects of applied potential and pH of solution upon the response of the modified electrode were investigated for an optimum analytical performance. Even in the presence of dissolved oxygen, the sensor exhibited highly sensitive and rapid response to H2O2. The steady‐state cathodic current responses of the modified electrode obtained at ?0.20 V (vs. SCE) in air‐saturated 0.1 mol L?1 phosphate buffer solution (PBS, pH 6.50) showed a linear relationship to H2O2 concentration ranging from 1.2×10?6 mol L?1 to 6.5×10?4 mol L?1 with a detection limit of 3.1×10?7 mol L?1. Performance of the electrode was evaluated with respected to possible interferences such as ascorbic acid and uric acid etc. The selectivity, stability, and reproducibility of the modified electrode were satisfactory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号