首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Prasanna S. Ghalsasi 《Polyhedron》2009,28(9-10):1856-1859
1,2,4,5-Tetracyanobenzene (TCNB), a moderate electron acceptor, reacts readily with N,N,N′,N′-tetramethyl-p-phenylenediamine (TMPD), a strong electron donor, to form black colored TMPD:TCNB complex when treated in 1:1 molar ratio. Single crystal X-ray diffraction studies on this complex showed that molecule of TMPD and TCNB are alternately stacked with an interplanar distance of 3.4 Å between them. The structure of the complex does not seem to show usual π–π interaction between the two aromatic rings, but indicates the presence of n–π interaction localized between the nitrogen atoms of TMPD and the cyano groups of TCNB. Along with this a prominent presence of CN···HAr hydrogen bonded ribbon network between nitrogen of cyanide moiety and hydrogen of neighboring aromatic carbon is observed with distance of 2.610 Å and angle of 147.19°. Magnetic measurements on the powdered compound using SQUID magnetometer (5–20 K) showed that the complex is weakly antiferromagnetic (θ = ?0.85 K). To my best knowledge CN···HAr interaction amongst electron acceptor molecules, to form a ribbon-like network, has not been observed before for a magnetic complex.  相似文献   

2.
Three new platinum complexes containing 3,3'-biisoquinoline (i-biq), [Pt(CN)(2)(i-biq)] (1), [PtCl(2)(i-biq)] (2), and [Pt(i-biq)(2)](PF(6))(2) (3), have been synthesized as orange-red, yellow, and colorless crystals, respectively. Their crystal structures and luminescence properties are reported. Crystal data: for 1.0.5H(2)O, PtO(0.5)N(4)C(20)H(13), orthorhombic, Pbcm, a = 13.989(2) ?, b = 18.304(1) ?, c = 6.682(3) ?, V = 1710.9(6) ?(3), Z = 4, and final R = 0.039 (R(w) = 0.033) for 970 independent reflections; for 2.DMF.H(2)O, PtCl(2)O(2)N(3)C(21)H(21), triclinic, P&onemacr;, a = 11.047(1) ?, b = 12.397(3) ?, c = 8.000(2) ?, alpha = 106.56(1) degrees, beta = 100.15(1) degrees, gamma = 76.15(1) degrees, V = 1012.8(3) ?(3), Z = 2, and final R = 0.058 (R(w) = 0.077) for 4219 independent reflections; for 3.2DMF, PtP(2)F(12)O(2)N(6)C(42)H(38), triclinic, P&onemacr;, a = 10.795(2) ?, b = 13.511(2) ?, c = 8.281(1) ?, alpha = 105.22(1) degrees, beta = 112.17(1) degrees, gamma = 85.02(1) degrees, V = 1079.2(3) ?(3), Z = 1, and final R = 0.038 (R(w) = 0.042) for 3606 independent reflections. Square-planar complexes of 1 are stacked in the crystal to form a columnar structure with the Pt-Pt distance of 3.34 ?. The crystal emits strongly, even at room temperature, and the emission spectrum is similar to that for the [Pt(CN)(2)(bpy)] crystal (bpy = 2,2'-bipyridine), which is due to a (3)dpi[dsigma(Pt) --> pi(i-biq)] transition. The single crystal emission spectrum at 77 K is, however, observed as a superposition of broad (3)dpi and sharp (3)pipi(i-biq) emissions. The crystal structure of 2 has a completely different stacking structure from that of 1. The stacking occurs on the i-biq ligands, and the Pt atoms are separated more than 6 ?. The complex exhibits only a structured emission component assigned to the (3)pipi(i-biq) transition in the crystal at 77 K, in agreement with the crystal structure with no Pt-Pt interaction. In the crystal of 3, the [Pt(i-biq)(2)](2+) complexes are stacked but offset, being in close contact between parts of adjacent i-biq ligands. There is no Pt-Pt interaction also in this case. Two i-biq ligands in the complex are distorted to adopt the bowed conformation due to the steric crowding of the alpha-hydrogens on opposite ligands. Nevertheless, 3 provides almost the same (3)pipi emission spectrum as 1 and 2 in dilute glassy solution at 77 K. The (3)pipi emission spectra observed in the crystals of these Pt(II) complexes are red-shifted compared with those in dilute glassy solution. The fact is attributable to the pi-pi intermolecular interactions between the ligands in the crystals. The factors controlling the crystal structures for these complexes are also discussed.  相似文献   

3.
The structure of P,P-bis(diisopropylamino)-4-phenyl-1,3,2lambda(5)-diazaphosphete, 1a, has been determined by a single-crystal X-ray diffraction study (C(19)H(33)N(4)P, monoclinic system, space group P2(1), a = 9.482(1) ?, b = 11.374(3) ?, c = 9.668(2) ?, beta = 97.16(1) degrees, Z = 2). According to quantum chemical calculations at an RHF level of optimization utilizing the 6-31g(d,p) basis set, 1a has a zwitterionic structure with the negative charge delocalized on the NCN allylic fragment and the positive charge localized at the phosphorus. Heterocycle 1a reacts with water and benzaldehyde affording N-phosphoranylbenzamidine 3 (95% yield) and the expected aza-Wittig adduct 4 (85% yield), respectively. Addition of 1 equiv of methyl trifluoromethanesulfonate and of 2 equiv of BH(3).THF to 1a affords cyclic phosphonium salt 5 (94% yield) and the bis(borane) adduct 6a (90% yield), respectively. Dimethyl acetylenedicarboxylate slowly reacts with 1a giving rise to 1,3,4lambda(5)-diazaphosphinine, 9, in 70% yield. The X-ray crystal structures of products 2,3, and 6a are reported (2: C(26)H(38)N(5)P, monoclinic system, space group C2/c, a = 16.337(8) ?, b = 19.810(2) ?, c = 8.800(2) ?, beta = 117.68(2) degrees, Z = 4. 3: C(19)H(35)N(4)OP, orthorhombic system, space group P2(1)2(1)2(1), a = 9.090(1) ?, b = 12.955(2) ?, c = 17.860(3) ?, Z = 4. 6a: C(19)H(39)B(2)N(4)P, orthorhombic system, space group P2(1)2(1)2(1), a = 10.340(1) ?, b = 13.247(1) ?, c = 16.996(1) ?, Z = 4).  相似文献   

4.
The synthesis of a new macrobicyclic cryptand (L) with heteroditopic receptor sites has been achieved in good yields by the [1 + 1] Schiff base condensation of tris(2-aminoethyl)amine (tren) with the tripodal trialdehyde, tris{[2-(3-(oxomethyl)phenyl)oxy]ethyl}amine at 5 degrees C temperature. The crystal structure of L (P2(1)/c, a = 10.756 (5) ?, b = 27.407(9) ?, c = 12.000(2) ?, beta = 116.22(3) degrees, Z = 4, R = 0.060, R(w) = 0.058) shows a pseudo-3-fold symmetry axis passing through the two bridgehead nitrogens. This symmetry is maintained in chloroform solution also, as indicated from its (1)H-NMR spectral data. The cryptand readily forms inclusion complexes with the Cu(II) ion at the tren end of the cavity. The tetracoordinated Cu(II) cryptate (1) thus formed with Cu(picrate)(2) exhibits a very small A(II) value (60 x 10(-)(4) cm(-)(1)) in its EPR spectrum and low-energy ligand field bands in its electronic spectrum in MeCN at room temperature. The bound Cu(II) ion readily accepts the anions CN(-), SCN(-), or N(3)(-), forming distorted trigonal bipyramidal complexes (2-4). The crystal structure of [Cu(L)(CN)](picrate) (2) (P2(1)/C, a = 13.099(1) ?, b = 11.847(8) ?, c = 25.844(7) ?, beta = 91.22(1) degrees, Z = 4, R = 0.056, R(w) = 0.054) has been determined. The equatorial coordination is provided by the three secondary amino N atoms of the tren unit in L, while the two axial positions are occupied by the bridgehead N of the tren unit and the C atom of the cyanide group. One of the equatorial Cu-N bond distances is 2.339(6) ?, which is longer than normal values. The crystal structure of [Cu(L)(NCS)](picrate) (3) (C2/c, a = 47.889(10) ?, b = 10.467(5) ?, c = 16.922(2) ?, beta = 93.90(2) degrees, Z = 8, R = 0.054, R(w) = 0.055) shows the coordination geometry around the Cu(II) ion to be very similar to that in the case of 2. The electronic spectral and EPR spectral data obtained on 2-4 are characteristic of trigonal bipyramidal Cu(II) complexes. The three meta-substituted benzene rings present in L makes the donor atom somewhat rigid in nature which enforces a distorted geometry around the Cu(II) ion.  相似文献   

5.
1 INTRODUCTION The chemistry of polyoxometalates has been at- tracting much attention due to the richness in their structures, electron and proton storage abilities, ther- mal stability and applications in catalysis, medicine and surface sciences[1~3]. In recent years, the mixed- valence as well as full oxidized vanadium polyoxo- anions have been crystallized with a variety of orga- nic molecules as counteranions[4~8]. However, the guiding principles of the crystal structures of poly- o…  相似文献   

6.
标题化合物C14H15ClN2O3是由2-氯苯甲醛、乙酰乙酸乙酯、尿素在TsOH作用下用微波辐射反应得到, 结构通过单晶X-射线衍射法确定, 其晶体属三斜晶系, 空间群P, Mr = 294.73, a = 7.688(1), b = 9.106 (2), c = 11.412(2) ? = 102.963(3), = 105.957(2), g = 102.484(2), V = 714.9(2) ?, Z = 2, Dc = 1.369 g/cm3, = 0.276 mm-1, F(000) = 308, 最终的偏离因子为R = 0.0845, wR = 0.2092。在分子结构中嘧啶环为船式结构, 平面1(苯环)与平面2 ((C(8)C(9) C(10)N(2))之间的两面角为 91.57啊?  相似文献   

7.
The coordination chemistry of 2,2'-dipyridyl diselenide (PySeSePy) (2) (C(10)H(8)N(2)Se(2)) has been investigated and its crystal structure has been determined (monoclinic, P2(1)/c, a = 10.129(2) ?, b = 5.7332(12) ?, c = 19.173(3) ?, beta = 101.493(8) degrees, Z = 4). In metal complexes the ligand was found to coordinate in three different modes, as also confirmed by X-ray structure determination. N,N'-coordination was found in the zinc complex [Zn(PySeSePy)Cl(2)] (3) (C(10)H(8)Cl(2)N(2)Se(2)Zn, triclinic, P&onemacr;, a = 7.9430(10) ?, b = 8.147(2) ?, c = 11.999(2) ?, alpha = 93.685(10) degrees, beta = 107.763(10) degrees, gamma = 115.440(10) degrees, Z = 2) and Se,Se'-coordination in the adduct of the ligand with bis(pentafluorophenyl)mercury(II) [PySeSePyHg(C(6)F(5))(2)] (5) (C(10)H(8)F(10)HgN(2)Se(2), monoclinic, P2(1)/n, a = 7.7325(10) ?, b = 5.9974(14) ?, c = 25.573, beta = 98.037(10) degrees, Z = 2), which however displays only weak interactions between selenium and mercury. The reaction of the ligand with norbornadiene carbonyl complexes of molybdenum and tungsten leads to reductive cleavage of the selenium-selenium bond with oxidation of the metal center and concomitant addition of the resulting selenolate to the metal carbonyl fragment. Thus the 7-coordinate complexes [Mo(SePy)(2)(CO)(3)] (6) (C(13)H(8)MoN(2)O(3)Se(2), monoclinic, P2(1)/n, a = 9.319(3) ?, b = 12.886(5) ?, c = 13.231(6) ?, beta = 109.23(3) degrees, Z = 4) and [W(SePy)(2)(CO)(3)] (7) (C(13)H(8)N(2)O(3)Se(2)W, monoclinic, P2(1)/n, a = 9.303(2) ?, b = 12.853(2) ?, c = 13.232(2) ?, beta = 109.270(10) degrees, Z = 4) were obtained. The same N,Se-coordination pattern emerges from the reaction of [Fe(2)(CO)(9)] with (2) leading to [Fe(SePy)(2)(CO)(2)] (8) (C(12)H(8)FeN(2)O(2)Se(2), monoclinic, P&onemacr;, a = 8.6691(14) ?, b = 12.443(2) ?, c = 14.085(2) ?, alpha = 105.811(10) degrees, beta = 107.533(8) degrees, gamma = 92.075(10) degrees, Z = 4).  相似文献   

8.
The metathetical reaction of 2-(dimethylamino)benzyllithium (Bz(N)Li) with GaCl(3) afforded the salt [Bz(N)(2)Ga][GaCl(4)] (4), the X-ray crystal structure of which revealed a four-coordinate cationic gallium center featuring two Ga-C sigma-bonds and two N-->Ga dative bonds. (Crystal data for 4: monoclinic, space group P2(1)/n, a = 11.519(2) ?, b = 18.254(4) ?, c = 12.506(3) ?, beta = 117.40(3) degrees, V = 2334.6(9) ?(3), Z = 4, R = 0.545). Two Ga.Cl interionic contacts, while somewhat long, are sufficiently strong to render the geometry of 4(+)() roughly midway between tetrahedral and octahedral. Treatment of 1,4-di-tert-butyl-1,4-diazabutadiene (DAB) with 2 equiv of GaCl(3) afforded [(DAB)GaCl(2)][GaCl(4)] (7), which, by means of X-ray analysis, was shown to possess a cation (7(+)()) with localized C=N bonds and N-->Ga dative interactions with a [GaCl(2)](+) moiety. (Crystal data for 7: orthorhombic, space group Pbca, a = 11.882(2) ?, b = 17.289(3) ?, c = 20.424(4) ?, V = 4195.5(11) ?(3), Z = 8, R = 0.460). The structure of 7(+)() is relevant to discussions of the bonding in both neutral DAB complexes of the group 13 elements and the skeletally isoelectronic anion [Me(4)C(4)GaCl(2)](-) (9(-)()). The structure of the [NEt(4)](+) salt of the latter (9) has been determined by X-ray diffraction. (Crystal data for 9: monoclinic, space group P2(1)/n, a = 9.967(1) ?, b = 13.073(2) ?, c = 15.345(2) ?, beta = 96.76(1) degrees, V = 1985.5(4) ?(3), Z = 4, R = 0.721).  相似文献   

9.
A general synthetic approach to rationalize the solution preparative chemistry of oxovanadium phosphates containing organic species as structural directing agents is presented. Careful attention is payed to the hydrolysis and condensation processes involving the ionic species in solution, and a simple restatement of the partial charge model (PCM) has been used in order to organize the experimental results. The structure of a new V(IV)-Fe(III) bimetallic oxovanadium phosphate, [H(3)N(CH(2))(2)NH(3)](2)[H(3)N(CH(2))(2)NH(2)] [Fe(III)(H(2)O)(2)(V(IV)O)(8)(OH)(4)(HPO(4))(4)(PO(4))(4)].4H(2)O, has been determined by X-ray single crystal diffraction methods. This compound crystallizes in the monoclinic system, space group P2(1)/n and the cell dimensions are as follows: a = 14.383(3) ?, b = 10.150(2) ?, c = 18.355(4) ?, and beta = 90.39(3) degrees (Z = 2). The existence of a complex intercrossing channel system, including a very large channel of 18.4 ? of diameter (in which both water molecules and ethylenediamine species are located), is the more interesting feature of this structure. Thermal decomposition, including the dehydration/rehydration process, has been studied by thermal analysis and variable temperature X-ray powder diffraction techniques. A complementary SEM study of the different intermediate decomposition products is presented.  相似文献   

10.
通过1-苯基-3-甲基-4-氯乙酰基-吡唑啉酮-5 (PMCP) 和4-甲基氨基硫脲 (MTSC) 缩合, 形成了一种新的双杂环化合物 (PMCP-MTSC)。利用元素分析与单晶X-射线衍射进行了表征。 该化合物(C14H15N5OS)属单斜晶系, P21 空间群, 晶体学参数为 a = 7.634(1), b = 11.639(2), c = 8.150(2) ? ?= 98.13(1), V = 716.9(2) ?, Z = 2, Dc = 1.396 g/cm3, (MoKa) = 0.232 mm-1, F(000) = 316, Mr = 301.37。结构由直接法解出,共收集3114个衍射点,其中I > 2(I)的独立衍射点有2453个,用全矩阵最小二乘法修正,最终偏离因子:R = 0.0294, wR = 0.0738。结构分析表明: 该化合物以酮式存在,分子间通过氢键作用(N(5)H…O)连接起来并形成一维链状结构。  相似文献   

11.
The phosphadiazonium cation [MesNP](+) reacts quantitatively with the fluorenylide anion, MesNH(2), and MesOH (Mes = 2,4,6-tri-tert-butylphenyl), resulting in formal insertion of the N-P moiety into the H-Y (Y = C, N, O) bonds. Specifically, reaction of MesNPCl with fluorenyllithium gives the aminofluorenylidenephosphine [crystal data: C(31)H(38)NP, monoclinic, P2(1)/c, a = 9.568(8) ?, b = 24.25(2) ?, c = 11.77(1) ?, beta = 101.38(8) degrees, Z = 4]. Similarly, reaction of [MesNP][GaCl(4)] with MesNH(2) gives the diaminophosphenium salt [MesN(H)PN(H)Mes][GaCl(4)] [crystal data: C(36)H(60)Cl(4)GaN(2)P, monoclinic, C2/c, a = 24.921(2) ?, b = 10.198(4) ?, c = 16.445(2) ?, beta = 93.32(1) degrees, Z = 4], and reaction with MesOH gives the first example of an aminooxyphosphenium salt [MesN(H)POMes][GaCl(4)]. It is proposed that the reactions involve nucleophilic attack at phosphorus followed by a 1,3-hydrogen migration from Y to N. Experimental evidence for the formation of sigma-complex intermediates is provided by the isolation of [MesNP-PPh(3)][SO(3)CF(3)] [crystal data: C(37)H(44)F(3)NO(3)P(2)S, triclinic, P&onemacr;, a = 10.663(1) ?, b = 19.439(1) ?, c = 10.502(1) ?, alpha = 103.100(7) degrees, beta = 113.311(7) degrees, gamma = 93.401(7) degrees, Z = 2]. As part of the unequivocal characterization of the aminooxyphosphenium salt, detailed solid-state (31)P NMR studies and GIAO calculations on the phosphenium cations have been performed. Contrary to popular belief, the phosphorus shielding in dicoordinate cations is not caused by the positive charge but results from efficient mixing between the phosphorus lone pair and pi orbitals.  相似文献   

12.
The tetraphenylimidodiphosphinate [N-(P,P-diphenylphosphinoyl)-P,P-diphenylphosphinimidate] ion forms stable tris-chelates with the Bi(III), In(III), and Ga(III) cations. The crystal and molecular structures of [M{(OPPh(2))(2)N}(3)] (M = Ga, In, Bi) were determined by X-ray diffractometry. The geometry around the bismuth atom in compound 3 displays an approximately C(3)(v)() symmetry. This arrangement suggests the presence of a stereoactive lone pair of electrons, which is located in one of the triangular octahedral faces. Derivative 3 crystallizes in the triclinic space group P&onemacr; with Z = 2, a = 14.006(6) ?, b = 14.185(4) ?, c = 17.609(8) ?, alpha = 88.45(2) degrees, beta = 79.34(2) degrees, and gamma = 78.23(2) degrees. The structures of the gallium(III) and indium(III) tris-chelate oxygen-based complexes (1 and 2, respectively) were compared with the bismuth analogue in order to determine the ligand steric bulk influence on the coordination sphere in the absence of the electron lone pair. Complex 1 crystallizes as the [Ga{(OPPh(2))(2)N}(3)].CH(2)Cl(2) solvate in the triclinic space group P&onemacr;; Z = 2, a = 13.534(4) ?, b = 13.855(4) ?, c = 18.732(7) ?, alpha = 95.48(2) degrees, beta = 98.26(2) degrees, and gamma = 97.84(2) degrees. Crystal data for the benzene solvate of 2, [In{(OPPh(2))(2)N}(3)].C(6)H(6): triclinic space group P&onemacr;, Z = 2, a = 13.542(9) ?, b = 15.622(3) ?, c = 18.063(5) ?, alpha = 98.21(1) degrees, beta = 104.77(0) degrees, and gamma = 92.260(0) degrees.  相似文献   

13.
New precursors to potentially conductive noninteger oxidation state (NIOS) compounds based on metal complexes [ML(2)](n)()(-) [M = Ni, Pd, Pt; L = 5,6-dihydro-1,4-dithiin-2,3-dithiolato (dddt(2)(-)), 5,7-dihydro-1,4,6-trithiin-2,3-dithiolato (dtdt(2)(-)), and 2-thioxo-1,3-dithiole-4,5-dithiolato (dmit(2)(-)); n = 2, 1, 0] have been investigated. Complexes of the series (NR(4))[ML(2)] (R = Me, Et, Bu; L = dddt(2)(-), dtdt(2)(-)) have been isolated and characterized, and the crystal structure of (NBu(4))[Pt(dtdt)(2)] (1) has been determined {1 = C(24)H(44)NPtS(10), a = 12.064(2) ?, b = 17.201(3) ?, c = 16.878(2) ?, beta = 102.22(2) degrees, V = 3423(1) ?(3), monoclinic, P2(1)/n, Z = 4}. Oxidation of these complexes affords the corresponding neutral species [ML(2)](0). Another series of general formula (cation)(n)()[M(dmit)(2)] [cation = PPN(+), BTP(+), and (SMe(y)()Et(3)(-)(y)())(+) with y = 0, 1, 2, and 3, n = 2, 1, M = Ni, Pd] has also been studied. All of these (cation)(n)()[M(dmit)(2)] complexes have been isolated and characterized [with the exception of (cation)[Pd(dmit)(2)] for cation = (SMe(y)()Et(3)(-)(y)())(+)]. The crystal structures of (PPN)[Ni(dmit)(2)].(CH(3))(2)CO (2) and (SMeEt(2))[Ni(dmit)(2)] (3) have been determined {2 = C(45)H(36)NNiS(10)P(2)O, a = 12.310(2) ?, b = 13.328(3) ?, c = 15.850(3) ?, alpha = 108.19(3) degrees, beta = 96.64(2) degrees, gamma = 99.67(2) degrees, V = 2373(1) ?(3), triclinic, P&onemacr;, Z = 2; 3 = C(11)H(13)NiS(11), a = 7.171(9) ?, b = 17.802(3) ?, c = 16.251(3) ?, beta = 94.39(4) degrees, V = 2068(2) ?(3), monoclinic, P2(1)/n, Z = 4} NIOS salts derived from the preceding precursors were obtained by electrochemical oxidation. Electrochemical studies of the [M(dddt)(2)] complexes show that they may be used for the preparation of NIOS radical cation salts and [M(dddt)(2)][M'(dmit)(2)](x)() compounds, but not for the preparation of (cation)[M(dddt)(2)](z)() NIOS radical anion salts. The electrochemical oxidation of the [M(dtdt)(2)](-) complexes always yields the neutral [M(dtdt)(2)](0) species. The crystal structure of [Pt(dddt)(2)][Ni(dmit)(2)](2) (4) has been determined and is consistent with the low compaction powder conductivity (5 x 10(-)(5) S cm(-)(1) at room temperature) {4 = C(20)H(8)Ni(2)PtS(28), a = 20.336(4) ?, b = 7.189(2) ?, c = 14.181(2) ?, beta = 97.16(2) degrees, V = 2057(1) ?(3), monoclinic, C2/m, Z = 2}. The crystal structures of the semiconducting NIOS compounds (BTP)[Ni(dmit)(2)](3) (5) and (SMe(3))[Ni(dmit)(2)](2) (6) have been determined {5 = C(43)H(22)PNi(3)S(30), a = 11.927(2) ?, b = 24.919(2) ?, c = 11.829(3) ?, alpha = 93.11(1) degrees, beta = 110.22(1) degrees, gamma = 83.94(1) degrees, V = 3284(1) ?(3), triclinic, P&onemacr;, Z = 2; 6 = C(15)H(9)Ni(2)S(21), a = 7.882(1) ?, b = 11.603(2) ?, c = 17.731(2) ?, alpha = 77.44(1) degrees, beta = 94.39(1) degrees, gamma = 81.27(1) degrees, V = 1563(1) ?(3), triclinic, P&onemacr;, Z = 2}. The parent compound (SEt(3))[Ni(dmit)(2)](z) (unknown stoichiometry) is also a semiconductor with a single-crystal conductivity at room temperature of 10 S cm(-)(1). By contrast, the single-crystal conductivity at room temperature of (SMeEt(2))[Pd(dmit)(2)](2) (7) is rather high (100 S cm(-)(1)). 7 behaves as a pseudometal down to 150 K and undergoes an irreversible metal-insulator transition below this temperature. The crystal structure of 7 has been determined {7 = C(17)H(13)NPd(2)S(21), a = 7.804(4) ?, b = 36.171(18) ?, c = 6.284(2) ?, alpha = 91.68(4) degrees, beta = 112.08(4) degrees, gamma = 88.79(5) degrees, V = 1643(1) ?(3), triclinic, P&onemacr;, Z = 2}. The electronic structure of (SMeEt(2))[Pd(dmit)(2)](2) (7) and the possible origin of the metal-insulator transition at 150 K are discussed on the basis of tight-binding band structure calculations.  相似文献   

14.
Bifunctional 1,2,3-dithiazoles bridged with azine and phenylenediamine spacers have been prepared, with a view to determining the extent of communication between the two dithiazole rings as a function of the electronic and steric demands of the bridge. The crystal structure of the closed-shell diazine derivative [S(2)NClC(2)=NN=C(2)ClNS(2)] is rigorously planar. Cyclic voltammetry on this compound indicates two reversible one-electron oxidations. The radical cation state has been characterized by EPR spectroscopy and by crystal structure determination of its 1:1 PF(6)(-) salt. The latter reveals little interaction between neighboring radical cations; consistently, the material exhibits a conductivity of sigma < 10(-5) S cm(-1). Insertion of a phenylene group into the diazine bridge to afford [S(2)NClC(2)=NC(6)H(4)N=C(2)ClNS(2)] leads to significant torsional motion between the phenylene ring and the two end groups, as a result of which the two DTA rings are electronically independent; no radical cation state has been observed for this species. Crystal data for Cl(2)S(4)N(4)C(4): a = 5.1469(15), b = 13.343(2), c = 14.2031(17), orthorhombic, Pbca, Z = 4. Crystal data for Cl(2)S(4)N(4)C(4)PF(6): a = 11.699(4), b = 12.753(5), c = 10.461(4), beta = 112.17(1) degrees, monoclinic, C2/c, Z = 4. Crystal data for C(l2)S(4)N(4)C(10)H(4): a = 3.9477(6), b = 23.790(3), c = 7.3769(9), beta =90.793(12) degrees, monoclinic, P2(1)/c, Z = 2.  相似文献   

15.
When the cyclic bis(amino)stannylene Me(2)Si(NtBu)(2)Sn is allowed to react with metal halides MX(2) (M = Cr, Fe, Co, Zn; X = Cl, Br [Zn]) adducts of the general formula [Me(2)Si(NtBu)(2)Sn.MX(2)](n) are obtained. The compounds are generally dimeric (n = 2) except the ZnBr(2) adduct, which is monomeric in benzene. The crystal structures of [Me(2)Si(NtBu)(2)Sn.CoCl(2)](2) (triclinic, space group &Pmacr;1; a = 8.620(9) ?, b = 9.160(9) ?, c = 12.280(9) ?, alpha = 101.2(1) degrees, beta = 97.6(1) degrees, gamma = 105.9(1) degrees, Z = 1) and of [Me(2)Si(NtBu)(2)Sn.ZnCl(2)](2) (monoclinic, space group P2(1)/c; a = 8.156(9) ?, b = 16.835(12) ?, c = 13.206(9) ?, beta = 94.27(6) degrees, Z = 2) were determined by X-ray diffraction techniques. The two compounds form similar polycyclic, centrosymmetrical assemblies of metal atoms bridged by chlorine or nitrogen atoms. While in the case of the cobalt compound Co is pentacoordinated by three chlorine and two nitrogen atoms, in the zinc derivative Zn is almost tetrahedrally coordinated by three chlorine atoms and one nitrogen atom. The iron derivative [Me(2)Si(NtBu)(2)Sn.FeCl(2)](2) seems to be isostructural with the cobalt compound as can be deduced from the crystal data (triclinic, a = 8.622(7) ?, b = 9.158(8) ?, c = 12.353(8) ?, alpha = 101.8(1) degrees, beta = 96.9(1) degrees, gamma = 105.9(1) degrees, Z = 1). If NiBr(2), PdCl(2), or PtCl(2) is combined with the stannylene, the reaction product is totally different: 4 equiv of the stannylene are coordinating per metal halide, forming the molecular compound [Me(2)Si(NtBu)(2)Sn](4)MX(2), which crystallizes with half a mole of benzene per molecular formula. The crystal structures of [Me(2)Si(NtBu)(2)Sn](4).NiBr(2).(1)/(2)C(6)H(6) (tetragonal, space group I4(1)/a, a = b = 43.86(4) ?, c = 14.32(2) ?, Z = 16) and [Me(2)Si(NtBu)(2)Sn](4).PdCl(2).(1)/(2)C(6)H(6) (tetragonal, space group I4(1)/a, a = b = 43.99(4) ?, c = 14.318(14) ?, Z = 16) reveal the two compounds to be isostructural. The molecules have an inner Sn(4)M pentametallic core (mean distances: Sn-Ni 2.463 ?, Sn-Pd 2.544 ?) with the transition metal in the center of a slightly distorted square formed by the four tin atoms, the distortion from planarity resulting in a weak paramagnetism of 0.2 &mgr;(B) for the nickel compound. The halogen atoms form bridges between two of the tin atoms and have no bonding interaction with the transition metal. The nickel compound has also been prepared by direct interaction of Br(2) or NR(4)Br(3) with [Me(2)Si(NtBu)(2)Sn](4)Ni as a minor product, the main products being Me(2)Si(NtBu)(2)Sn(NtBu)(2)SiMe(2,) Me(2)Si(NtBu)(2)SnBr(2), NiBr(2) and SnBr(2). Other metal clusters have been obtained by the reaction of Me(2)Si(NtBu)(2)Sn with tetrakis(triphenyphosphine)palladium or by the reaction of Me(2)Si(NtBu)(2)Ge with RhCl(PPh(3))(3). In the first case Ph(3)PPd[Sn(NtBu)(2)SiMe(2)](3)PdPPh(3) (rhombohedral, space group R3c, a = b = 21.397(12) ?, c = 57.01(5) ?, alpha = beta = 90 degrees, gamma = 120 degrees, Z = 12) is formed and is characterized by X-ray techniques to be composed of a central PdSn(3)Pd trigonal bipyramid with the tin atoms occupying the equatorial positions (Pd-Sn = 2.702(5) ?). In the second reaction all the triphenylphosphine ligands are replaced from rhodium and Rh[Ge(NtBu)(2)SiMe(2)](4)Cl is formed (monoclinic, space group P2(1)/n, a = 12.164(2) ?, b = 23.625(5) ?, c = 24.128(5) ?, beta = 102.74(3) degrees, Z = 4). The central core of this molecule is made up of a rhodium atom which is almost square planarly coordinated by the germanium atoms, two of which are bridged by chlorine (mean Ge-Rh = 2.355 ?).  相似文献   

16.
The dinuclear copper(II) complexes [Cu(2)(tmihpn)(prz)](ClO(4))(2).2CH(3)CN (6) and [Cu(2)(tmihpn)(O(2)CCH(3))](ClO(4))(2).CH(3)CN (7) were prepared, where tmihpn is the deprotonated form of N,N,N',N'-tetrakis[(1-methylimidazol-2-yl)methyl]-1,3-diaminopropan-2-ol and prz is the pyrazolate anion. The crystal structures of 6 and 7 were determined and revealed that both complexes contain bridging alkoxide ligands as well as bridging pyrazolate and acetate ions, respectively. Crystal data: compound 6, triclinic, P&onemacr;, a = 18.089(2) ?, b = 22.948(3) ?, c = 9.597(2) ?, alpha = 93.37(2) degrees, beta = 94.49(2) degrees, gamma = 81.69(2) degrees, V = 3925.1 ?(3), Z = 4; compound 7, triclinic, P&onemacr;, a = 12.417(2) ?, b = 15.012(3) ?, c = 10.699(2) ?, alpha = 104.76(2) degrees, beta = 102.63(2) degrees, gamma = 99.44(2) degrees, V = 1830.1 ?(3), Z = 2. In compound 6, the coordination geometry around both copper centers resembles a distorted square pyramid, while the stereochemistry around the copper centers in 7 is best described as trigonal bipyramidal. Both complexes display well-resolved isotropically shifted (1)H NMR spectra. Selective substitution studies and integration data have been used to definitively assign several signals to specific ligand protons. Results from the solution (1)H NMR studies suggest that the basal and apical imidazole groups do not exchange rapidly on the NMR time scale and the solid state structures of the complexes are retained in solution. In addition, the magnetochemical characteristics of 6 and 7 were determined and provide evidence for "magnetic orbital switching". Antiferromagnetic coupling in 6 (J = -130 cm(-)(1)) is strong, while the copper centers in compound 7 are ferromagnetically coupled (J = +16.4 cm(-1)). Differences in the magnetic behavior of the two copper centers have been rationalized using the "ligand orbital complementary" concept. The ground state magnetic orbitals involved in spin coupling in 6 (d(x)()()2(-)(y)()()2) are different from those in 7 (d(z)()()2).  相似文献   

17.
The reactions of the singly deprotonated di-2-pyridylmethanediol ligand (dpmdH(-)) with copper(II) and bismuth(III) have been investigated. A new dinuclear bismuth(III) complex Bi(2)(dpmdH)(2)(O(2)CCF(3))(4)(THF)(2), 1, has been obtained by the reaction of BiPh(3) with di-2-pyridyl ketone in the presence of HO(2)CCF(3) in tetrahydrofuran (THF). The reaction of Cu(OCH(3))(2) with di-2-pyridyl ketone, H(2)O, and acetic acid in a 1:2:2:2 ratio yielded a mononuclear complex Cu[(2-Py)(2)CO(OH)](2)(HO(2)CCH(3))(2), 2, while the reaction of Cu(OAC)(2)(H(2)O) with di-2-pyridyl ketone and acetic acid in a 2:1:1 ratio yielded a tetranuclear complex Cu(4)[(2-Py)(2)CO(OH)](2)(O(2)CCH(3))(6)(H(2)O)(2), 3. The structures of these complexes were determined by single-crystal X-ray diffraction analyses. Three different bonding modes of the dpmdH(-) ligand were observed in compounds 1-3. In 2, the dpmdH(-) ligand functions as a tridentate chelate to the copper center and forms a hydrogen bond between the OH group and the noncoordinating HO(2)CCH(3) molecule. In 1 and 3, the dpmdH(-) ligand functions as a bridging ligand to two metal centers through the oxygen atom. The two pyridyl groups of the dpmdH(-) ligand are bound to one bismuth(III) center in 1, while in 3 they are bound two copper(II) centers, respectively. Compound 3 has an unusual one dimensional hydrogen bonded extended structure. The intramolecular magnetic interaction in 3 has been found to be dominated by ferromagnetism. Crystal data: 1, C(38)H(34)N(4)O(14)F(12)Bi(2), triclinic P&onemacr;, a = 11.764(3) ?, b = 11.949(3) ?, c = 9.737(1) ?, alpha =101.36(2) degrees, beta = 105.64(2) degrees, gamma = 63.79(2) degrees, Z = 1; 2, C(26)H(26)N(4)O(8)Cu/CH(2)Cl(2), monoclinic C2/c, a = 25.51(3) ?, b = 7.861(7) ?, c = 16.24(2) ?, beta = 113.08(9) degrees, Z = 4; 3, C(34)H(40)N(4)O(18)Cu(4)/CH(2)Cl(2), triclinic P&onemacr;, a = 10.494(2) ?, b = 13.885(2) ?, c = 7.900(4) ?, alpha =106.52(2) degrees, beta = 90.85(3) degrees, gamma = 94.12(1) degrees, Z = 1.  相似文献   

18.
标题化合物C11H10N2O3是由咪唑啉-2,4-二酮、对甲氧基苯甲醛在微波辐射下反应而得, 反应在5分钟内完成。结构通过单晶X-射线衍射法测定,其晶体属三斜晶系,空间群P, Mr = 218.21, a = 5.346(1), b = 10.212(2), c = 10.368(2) ? ?= 72.34(2), ?= 75.35(2), ?= 78.09(2), V = 516.6(2) ?, Z = 2, Dc = 1.403 g/cm3, = 0.104 mm-1, F(000) = 228, R = 0.0442, wR = 0.1152。咪唑环与苯环之间的两面角为5.45, 分子之间存在氢键, 形成了网状结构。  相似文献   

19.
在水热的条件下合成了1个多聚钒硼酸盐[Ni(en)2]6H2[(VO)12O6B18O42]15H2O,化学式为C24H128B18N24Ni6O75V12(Mr=3111.62),用单晶X射线衍射方法测定了它的结构,该晶体属三方晶系,R-3空间群,晶胞参数为a=13.942(2)?=96.476(2),V=2653.9(5)?,Z=1,Dc=1.947g/cm3,=21.55cm-1,F(000)=1574,2108个可观察衍射点(I>2(I)),最终结构精修到偏离因子R=0.0594,wR=0.1398,S=1.009。在该化合物的结构中,18员环的B18O42通过18个B(3-O)V键被2个V6O15簇夹在中间,6个[Ni(en)2]基团分别通过2个Ni(3-O)B与B18O42环相连。  相似文献   

20.
The synthesis, crystal structure, and magnetic properties are reported for the new bimetallic compound Cu(op)(2)MnCl(4), where op = HN(CH(2))(5)NH. The compound, C(10)H(24)N(4)Cl(4)CuMn, crystallizes in the monoclinic space group P2(1)/n. Cell dimensions are as follows: a = 15.316(3) ?, b = 16.608(3) ?, c = 7.141(2) ?, beta = 100.01(5) degrees, Z = 4. The structure consists of well-separated and magnetically equivalent layers which are composed of chloride-bridged Cu(op)(2)MnCl(4) binuclear units connected by rather loose Cu-N-H.Cl-Mn contacts. The MnCl(4) fragment approximates tetrahedral symmetry. The Cu(II) geometry is (4 + 1) square-pyramidal with the apical position occupied by a bridging chloride ligand and the basal ones by the nitrogen atoms from the organic ligands. The shortest interlayer M.M separations, approximately 7 ?, are of the Mn.Cu type. Magnetic susceptibility and single-crystal EPR measurements for the compound have been carried out over the range 4-300 K. At room temperature the chiT product (per MnCu unit) has a value of 4.84 emu.mol(-)(1).K, close to that expected for uncoupled S = (5)/(2) and S = (1)/(2) spins. When the temperature is lowered, chiT remains almost constant until 80-90 K, slightly increases to reach a maximum at approximately 13 K (5.21 emu.mol(-)(1).K), and then rapidly decreases. Comparison between theory and experiment, made with use of both a mean field corrected dimer model and an approximate 2-D model, indicates that Mn(II).Cu(II) exchange is ferromagnetic within the dimers (J(1) approximately 2.6 cm(-)(1)) and antiferromagnetic among dimers, with J values between -0.07 and -0.03 cm(-)(1) (the interaction Hamiltonian is of the form H = -2JS(A).S(B)). Single-crystal EPR spectra recorded along the a, b, and c axes show a large temperature dependence of the g factors: at 4.2 K, g(a) = 2.10, g(b) = 1.96, and g(c) = 2.01. This pattern substantiates the presence of a 2-D magnetic structure with ferromagnetic intradimer exchange and interdimer antiferromagnetic exchange of weaker magnitude. The opposite signs of the interactions are ascribed to the local symmetries of the Cu(II) and Mn(II) ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号