共查询到20条相似文献,搜索用时 0 毫秒
1.
Renbao Wang Lei Wan Haihong Niu Qiong Ma Shiding Miao Jinzhang Xu 《Journal of Sol-Gel Science and Technology》2013,67(3):458-463
A green and simple method was found to prepare CdS/CdSe co-sensitized photoelectrodes for the quantum dots sensitized solar cells application. All the assembly processes of CdS and CdSe quantum dots (QDs) were carried out in aqueous solution. CdS and CdSe QDs were sequentially assembled onto TiO2-nano-SiO2 hybrid film by two steps. Firstly, CdS QDs were deposited in situ over TiO2-nano-SiO2 hybrid film by the successive ionic layer adsorption and reaction (SILAR) process in water. Secondly, using 3-mercaptopropionic acid (3-MPA) as a linker molecule, the pre-prepared colloidal CdSe QDs (~3.0 nm) dissolved in water was linked onto the TiO2-nano-SiO2 hybrid film by the self-assembled monolayer technique with the mode of dropwise. The mode is simple and advantageous to saving materials and time. The results show that the photovoltaic performance of the cells is enhanced with the increase of SILAR cycles for TiO2-nano-SiO2/CdS photoelectrode. The power conversion efficiency of 2.15 % was achieved using the co-sensitization photoelectrode prepared by using 6 SILAR cycles of CdS plus CdSe (TiO2-nano-SiO2/CdS(6)/CdSe) under the illumination of one sun (AM1.5, 100 mW/cm2). 相似文献
2.
《Supramolecular Science》1998,5(5-6):709-711
CdSe sensitized TiO2 nanocrystalline solar cells were made with the participation of silicotungstic acid (STA) during the deposition of CdSe, the resulting Voc and Isc were 0.23 V cm-2 and 10 mA cm-2, respectively. The doping, time and microporous membrane effects were also discussed. 相似文献
3.
Hierarchical anatase TiO(2) nanoplates with tunable shell structure were developed as the novel planar scattering layer in dye-sensitized solar cells, showing improved cell performance due to the enhanced light harvesting capability. 相似文献
4.
Efficient light harvesting by using green Zn-porphyrin-sensitized nanocrystalline TiO2 films 总被引:1,自引:0,他引:1
Wang Q Campbell WM Bonfantani EE Jolley KW Officer DL Walsh PJ Gordon K Humphry-Baker R Nazeeruddin MK Grätzel M 《The journal of physical chemistry. B》2005,109(32):15397-15409
A series of novel zinc metalloporphyrins, cyano-3-(2'-(5',10',15',20'-tetraphenylporphyrinato zinc(II))yl)-acrylic acid (Zn-3), 3-(trans-2'-(5',10',15',20'-tetraphenylporphyrinato zinc(II))yl)-acrylic acid (Zn-5), 2-cyano-5-(2'-(5',10',15',20'-tetraphenylporphyrinato zinc(II))yl)-penta-2,4-dienoic acid (Zn-8), 4-(trans-2'-(2' '-(5' ',10' ',15' ',20' '-tetraphenylporphyrinato zinc(II))yl)ethen-1'-yl))-1,2-benzenedicarboxylic acid (Zn-11), and 2-cyano-3-[4'-(trans-2' '-(2' '-(5' ',10' ',15' ',20' '-tetraphenylporphyrinato zinc(II))yl) ethen-1' '-yl)-phenyl]-acrylic acid (Zn-13) were synthesized and characterized by using various spectroscopic techniques. Density functional theory (DFT) and time-dependent DFT (TDDFT) calculations show that key molecular orbitals (MOs) of porphyrins Zn-5 and Zn-3 are stabilized and extended out onto the substituent by pi-conjugation, causing enhancement and red shifts of visible transitions and increasing the possibility of electron transfer from the substituent. The porphyrins were investigated for conversion of sunlight into electricity by constructing dye-sensitized TiO(2) solar cells using an I(-)/I(3)(-) electrolyte. The cells yield close to 85% incident photon-to-current efficiencies (IPCEs), and under standard AM 1.5 sunlight, the Zn-3-sensitized solar cell demonstrates a short circuit photocurrent density of 13.0 +/- 0.5 mA/cm(2), an open-circuit voltage of 610 +/- 50 mV, and a fill factor of 0.70 +/- 0.03. This corresponds to an overall conversion efficiency of 5.6%, making it the most efficient porphyrin-sensitized solar cell reported to date. 相似文献
5.
J. Chen D.W. Zhao J.L. Song X.W. Sun W.Q. Deng X.W. Liu W. Lei 《Electrochemistry communications》2009,11(12):2265-2267
We report an improved quantum dot sensitized solar cell (QDSSC) by loading mercaptopropionic acid (MPA)-capped CdSe QDs on TiO2 film in aqueous solution. Under suitable pH value, a power conversion efficiency of 1.19% and an incident photon to current conversion efficiency of 26% for the QDSSC were obtained at AM1.5G irradiation. The improved performance of QDSSC is attributed to the large loading and good coverage of QDs on TiO2 film with optimal pH value. 相似文献
6.
Greenwald S Rühle S Shalom M Yahav S Zaban A 《Physical chemistry chemical physics : PCCP》2011,13(43):19302-19306
A quantum dot sensitized solar cell based on a porous ZrO(2) film, sensitized with CdSe quantum dots using CdS as an intermediate layer is presented. We observe electron injection from photo-excited quantum dots into the ZrO(2), which is unexpected due to the much higher conduction band edge (closer to the vacuum level) of bulk ZrO(2) compared to TiO(2). 相似文献
7.
Samadpour M Giménez S Zad AI Taghavinia N Mora-Seró I 《Physical chemistry chemical physics : PCCP》2012,14(2):522-528
TiO(2) hollow fibers with high surface area were manufactured by a simple synthesis method, using natural cellulose fibers as template. The effective light scattering properties of the hollow fibers, originating from their micron size, were observed by diffuse reflectance spectroscopy. In spite of the micrometric length of the TiO(2) hollow fibers, the walls were highly porous and high surface area (78.2 m(2) g(-1)) was obtained by the BET method. TiO(2) hollow fibers alone and mixed with other TiO(2) pastes were sensitized with CdSe quantum dots (QDs) by Successive Ionic Layer Adsorption and Reaction (SILAR) and integrated as a photoanode in quantum dot sensitized solar cells (QDSCs). High power conversion efficiency was obtained, 3.24% (V(oc) = 503 mV, J(sc) = 11.92 mA cm(-2), FF = 0.54), and a clear correspondence of the cell performance with the photoanode structure was observed. The unique properties of these fibers: high surface area, effective light scattering, hollow structure to facile electrolyte diffusion and the rather high efficiencies obtained here suggest that hollow fibers can be introduced as promising nanostructures to make highly efficient quantum dot sensitized solar cells. 相似文献
8.
Moon SJ Baranoff E Zakeeruddin SM Yeh CY Diau EW Grätzel M Sivula K 《Chemical communications (Cambridge, England)》2011,47(29):8244-8246
We report panchromatic light harvesting in hybrid TiO(2)/P3HT photovoltaic devices using a porphyrin dye that complements the light absorption of P3HT. The high short circuit photocurrent (12.1 mA cm(-2)) obtained is found to be due, in part, to F?rster resonance energy transfer from the P3HT to the dye. 相似文献
9.
Kim J Koh JK Kim B Kim JH Kim E 《Angewandte Chemie (International ed. in English)》2012,51(28):6864-6869
Nanopatterning provides facile process to well-arrayed mesoporous inorganic oxide films at low cost by using readily available pastes and elastomeric nanostamps. The fabricated nanopattern boosted the light-harvesting efficiency of dye-sensitized solar cells (DSSCs) by a light-trapping technique. The iodine-free solid-state DSSCs showed a 40 % increase in the current density and high efficiency (7.03 %). 相似文献
10.
11.
Metal oxide semiconductors with lower lying conduction band minimum and superior electron mobility are essential for efficient charge separation and collection in PbS-sensitized solar cells. In the present study, mesoscopic SnO(2) was investigated as an alternative photoanode to the commonly used TiO(2) and examined comprehensively in PbS-sensitized liquid junction solar cells. To exploit the capability of PbS in an optimized structure, cascaded nPbS/nCdS and alternate n(PbS/CdS) layers deposited by a successive ionic layer adsorption and reaction method were systematically scrutinized. It was observed that the surface of SnO(2) has greater affinity to the growth of PbS compared with TiO(2), giving rise to much enhanced light absorption. In addition, the deposition of a CdS buffer layer and a ZnS passivation layer before and after a PbS layer was found to be beneficial for efficient charge separation. Under optimized conditions, cascaded PbS/CdS-sensitized SnO(2) exhibited an unprecedented photocurrent density of 17.38 mA cm(-2) with pronounced infrared light harvesting extending beyond 1100 nm, and a power conversion efficiency of 2.23% under AM 1.5, 1 sun illumination. In comparison, TiO(2) cells fabricated under similar conditions showed much inferior performance owing to the less efficient light harnessing of long wavelength photons. We anticipate that the systematic study of PbS-sensitized solar cells utilizing different metal oxide semiconductors as electron transporters would provide useful insights and promote the development of semiconductor-sensitized mesoscopic solar cells employing panchromatic sensitizers. 相似文献
12.
Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe-TiO2 architecture 总被引:1,自引:0,他引:1
Kongkanand A Tvrdy K Takechi K Kuno M Kamat PV 《Journal of the American Chemical Society》2008,130(12):4007-4015
Different-sized CdSe quantum dots have been assembled on TiO2 films composed of particle and nanotube morphologies using a bifunctional linker molecule. Upon band-gap excitation, CdSe quantum dots inject electrons into TiO2 nanoparticles and nanotubes, thus enabling the generation of photocurrent in a photoelectrochemical solar cell. The results presented in this study highlight two major findings: (i) ability to tune the photoelectrochemical response and photoconversion efficiency via size control of CdSe quantum dots and (ii) improvement in the photoconversion efficiency by facilitating the charge transport through TiO2 nanotube architecture. The maximum IPCE (photon-to-charge carrier generation efficiency) obtained with 3 nm diameter CdSe nanoparticles was 35% for particulate TiO2 and 45% for tubular TiO2 morphology. The maximum IPCE observed at the excitonic band increases with decreasing particle size, whereas the shift in the conduction band to more negative potentials increases the driving force and favors fast electron injection. The maximum power-conversion efficiency =1% obtained with CdSe-TiO2 nanotube film highlights the usefulness of tubular morphology in facilitating charge transport in nanostructure-based solar cells. Ways to further improve power-conversion efficiency and maximize light-harvesting capability through the construction of a rainbow solar cell are discussed. 相似文献
13.
Mattsson A Leideborg M Larsson K Westin G Osterlund L 《The journal of physical chemistry. B》2006,110(3):1210-1220
Adsorption and solar light decomposition of acetone was studied on nanostructured anatase TiO2 and Nb-doped TiO2 films made by sol-gel methods (10 and 20 mol % NbO2.5). A detailed characterization of the film materials show that films contain only nanoparticles with the anatase modification with pentavalent Nb oxide dissolved into the anatase structure, which is interpreted as formation of substituted Nb=O clusters in the anatase lattice. The Nb-doped films displayed a slight yellow color and an enhanced the visible light absorption with a red-shift of the optical absorption edge from 394 nm for the pure TiO2 film to 411 nm for 20 mol % NbO2.5. In-situ Fourier transform infrared (FTIR) transmission spectroscopy shows that acetone adsorbs associatively with eta1-coordination to the surface cations on all films. On Nb-doped TiO2 films, the carbonyl bonding to the surface is stabilized, which is evidenced by a lowering of the nu(C=O) frequency by about 20 cm(-1) to 1672 cm(-1). Upon solar light illumination acetone is readily decomposed on TiO2, and stable surface coordinated intermediates are formed. The decomposition rate is an order of magnitude smaller on the Nb-doped films despite an enhanced visible light absorption in these materials. The quantum yield is determined to be 0.053, 0.004 and 0.002 for the pure, 10% Nb:TiO2, and 20%Nb:TiO2, respectively. Using an interplay between FTIR and DFT calculations we show that the key surface intermediates are bidentate bridged formate and carbonate, and H-bonded bicarbonate, respectively, whose concentration on the surface can be correlated with their heats of formation and bond strength to coordinatively unsaturated surface Ti and Nb atoms at the surface. The oxidation rate of these intermediates is substantially slower than the initial acetone decomposition rate, and limits the total oxidation rate at t>7 min on TiO2, while no decrease of the rate is observed on the Nb-doped films. The rate of degradation of key surface intermediates is different on pure TiO2 and Nb-doped TiO2, but cannot explain the overall lower total oxidation rate for the Nb-doped films. Instead the inferior photocatalytic activity in Nb-doped TiO2 is attributed to an enhanced electron-hole pair recombination rate due to Nb=O cluster and cation vacancy formation. 相似文献
14.
Encapsulation with a nC60 cluster shell facilitates capture of photogenerated electrons from CdSe quantum dots following visible light excitation. Electrophoretic deposition of CdSe-C60 composite clusters on optically transparent electrodes (OTE/SnO2) produce photoactive films that exhibit photoelectrochemical activity. The observed photoconversion efficiency (IPCE) of approximately 4% is significantly greater than those observed with CdSe or nC60 films. 相似文献
15.
Warnan J Pellegrin Y Blart E Odobel F 《Chemical communications (Cambridge, England)》2012,48(5):675-677
Doping a zinc porphyrin based-sensitizer with antenna molecules, axially held by metallo-supramolecular interactions, enhances the light-harvesting efficiency and the overall photo-conversion efficiency of the solar cells by about 30%. 相似文献
16.
Charge separation and efficient light energy conversion in sensitized mesoscopic solar cells based on binary ionic liquids 总被引:1,自引:0,他引:1
Wang P Wenger B Humphry-Baker R Moser JE Teuscher J Kantlehner W Mezger J Stoyanov EV Zakeeruddin SM Grätzel M 《Journal of the American Chemical Society》2005,127(18):6850-6856
A 7.4% power conversion efficiency at air mass (AM) 1.5 full sunlight was reached with a mesoscopic solar cell employing a new binary ionic liquid electrolyte composed of 1-propyl-3-methylimidazolium iodide and 1-ethyl-3-methylimidazolium tricyanomethanide in conjunction with the amphiphilic ruthenium complex NaRu(4-carboxylic acid-4'-carboxylate)(4,4'-dinonyl-2,2'-bipyridine)(NCS)(2), coded as Z-907Na. Ultramicroelectrode voltammetric, nanosecond laser transient absorbance, and photovoltaic measurements show that a high iodide concentration is required for dye regeneration to compete efficiently with charge recombination. A surprisingly fast reductive quenching process is turned on in pure iodide melts. This channel is unproductive, explaining the lower photocurrents observed under these conditions. 相似文献
17.
Various characteristics of dye-sensitized nanostructured TiO2 solar cells, such as electron transport and electron lifetime, were studied in detail using monochromatic illumination conditions. The electron transport was found to be a thermally activated process with activation energies in the range of 0.10-0.15 eV for light intensities that varied 2 orders of magnitude. Electron lifetimes were determined using a new method and found to be significantly larger (>1 s) than previously determined. An average potential was determined for electrons in the nanostructured TiO2 under illumination in short-circuit conditions. This potential is about 0.2 V lower than the open-circuit potential at the same light intensity. The electron transport time varies exponentially with the internal potential at short-circuit conditions, indicating that the gradient in the electrochemical potential is the driving force for electron transport in the nanostructured TiO2 film. The applicability of the conventionally used trapping/detrapping model is critically analyzed. Although experimental results can be fitted using a trapping/detrapping model with an exponential distribution of traps, the distribution parameters differ significantly between different types of experiment. Furthermore, the experimental activation energies for electron transport are smaller than those expected in a trapping/detrapping model. 相似文献
18.
M. Suresh Kumar Madhusudanan Sreejith P. Kanth Sidhanth C. Mohanta Kallol Batabyal Sudip K. 《Journal of Solid State Electrochemistry》2020,24(2):305-311
Journal of Solid State Electrochemistry - The quaternary Cu2BaSnS4 (CBTS) is a new class of compound-semiconducting material, recently, emerging as one of the promising materials in the field of... 相似文献
19.
Singh SK Chauhan R Singh B Diwan K Kociok-Köhn G Bahadur L Singh N 《Dalton transactions (Cambridge, England : 2003)》2012,41(4):1373-1380
In this work, the photosensitizing properties of ferrocene (Fc)-based compounds FcCH(2)CS(3)CH(2)Fc (1) and FcCH(2)SSCH(2)Fc (2) were investigated and significant enhancement in the light harvesting efficiency was observed compared to those achieved with previously reported compounds from our lab. The compounds were fully characterized by spectroscopy and X-ray crystallography, and their electrochemical properties studied. DSSCs based on these dyes display efficiencies comparable to those of a standard cell based on N719 under similar experimental conditions. These studies demonstrate that ferrocenyl-based sulfur rich compounds with proper orientation of the Fc groups assisted via suitable linkers, together with desired redox properties and visible region electronic absorption features could constitute a new class of photosensitizers targeting light driven reactions. 相似文献
20.
Jin H Choi S Velu R Kim S Lee HJ 《Langmuir : the ACS journal of surfaces and colloids》2012,28(12):5417-5426
A multilayer of CdSe quantum dots (QDs) was prepared on the mesoporous surface of a nanoparticulate TiO(2) film by a layer-by-layer (LBL) assembly using the electrostatic interaction of the oppositely charged QD surface for application as a sensitizer in QD-sensitized TiO(2) solar cells. To maximize the absorption of incident light and the generation of excitons by CdSe QDs within a fixed thickness of TiO(2) film, the experimental conditions of QD deposition were optimized by controlling the concentration of salt added into the QD-dissolved solutions and repeating the LBL deposition a few times. A proper concentration of salt was found to be critical in providing a deep penetration of QDs into the mesopore, thus leading to a dense and uniform distribution throughout the whole TiO(2) matrix while anchoring the oppositely charged QDs alternately in a controllable way. A series of post-treatments with (1) CdCl(2), (2) thermal annealing, and (3) ZnS-coating was found to be very critical in improving the overall photovoltaic properties, presumably through a better connection between QDs, effective passivation of QD's surface, and a high impedance of recombination, which were proved by transmission electron microscopy (TEM) and electrochemical impedance spectroscopy (EIS) experiments. With a proper post-treatment of multilayered QDs as a sensitizer, the overall power conversion efficiency in the CdSe QD-sensitized TiO(2) solar cells could reach 1.9% under standard illumination condition of simulated AM 1.5G (100 mW/cm(2)). 相似文献