首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spectral domain second-harmonic optical coherence tomography   总被引:3,自引:0,他引:3  
Optical coherence tomography (OCT) provides micrometer-scale structural imaging by coherent detection of backscattered light. Molecular contrast in OCT has been demonstrated using transient absorption, coherent anti-Stokes Raman scattering, and second-harmonic (SH) generation. The sensitivity of molecular contrast signals can be enhanced by use of Fourier domain techniques. We have constructed a spectrometer-based Fourier domain SH-OCT system for simultaneous acquisition of the fundamental and SH signals. We report a >30 dB increase in SH sensitivity over a similar time domain SH-OCT system and demonstrate contrast between cartilage and bone using collagen as the contrast agent.  相似文献   

2.
We developed an ultrahigh-resolution full-field optical coherence tomography (FF-OCT) microscope that is based on the spatial, rather than the temporal, coherence gating. The microscope is capable of observing three-dimensional microbiological structures as small as 0.4 μm × 0.4 μm × 1.0 μm (xyz) using quasi-monochromatic light and a liquid crystal retarder. Unlike traditional FF-OCT systems, this microscope can be operated in high resolution for any preferable wavelength with minimized defocusing and dispersion effects. High-resolution images of an onion cell are presented.  相似文献   

3.
A novel spectral calibration method is developed for spectral domain optical coherence tomography system. The method is based on two measurements of interference spectra from two reference mirror positions. It removes the influence of dispersion mismatch, and hence accurately determines the spectral distribution on the line-scan charge-coupled device (CCD) for sequent precise interpolation. High quality imaging can be realized with this method. Elimination of the degradation effect caused by dispersion mismatch is verified experimentally, and improved two-dimensional (2D) imaging of fresh orange pulp based on the proposed spectral calibration method is demonstrated.  相似文献   

4.
Interferometric synthetic aperture microscopy processing of optical coherence tomography data has been shown to allow computational focusing of en face planes that have traditionally been regarded as out of focus. It is shown that this focusing of the image also produces a defocusing effect in autocorrelation artifacts resulting from Fourier-domain data collection. This effect is verified experimentally and through simulation.  相似文献   

5.
The performance of collinear and noncollinear pulsed barium borate optical parametric oscillators with third-harmonic Nd:YAG pumping is analyzed. The effects of tangential phase matching and pump Poynting vector walk-off compensation are shown to enhance noncollinear operation. However, we show that these effects are mutually exclusive for a typeI beta-barium borate optical parametric oscillator and furthermore that tangential phase matching is dominant. The selection of a collinear or a noncollinear configuration is determined by pump divergence and spot size as well as by crystal aperture. With a pump divergence of 4mrad, noncollinear operation is optimal. The highest slope efficiency, 37%, and the lowest threshold, 5mJ, are obtained with nearly perfect tangential phase matching. For a pump divergence of less than 2mrad and a similar spot size, collinear operation gives the lowest threshold, 3.2mJ, and the highest slope efficiency, 33%.  相似文献   

6.
We designed and fabricated an arrayed-waveguide grating (AWG) in silicon oxynitride as a spectrometer for spectral domain optical coherence tomography (SD-OCT). The AWG has a footprint of only 3.0 cm × 2.5 cm, operates at a center wavelength of 1300 nm, and has 78 nm free spectral range. OCT measurements are performed that demonstrate imaging up to a maximum depth of 1 mm with an axial resolution of 19 μm, both in agreement with the AWG design parameters. Using the AWG spectrometer combined with a fiber-based SD-OCT system, we demonstrate cross-sectional OCT imaging of a multilayered scattering phantom.  相似文献   

7.
Yasuno Y  Makita S  Sutoh Y  Itoh M  Yatagai T 《Optics letters》2002,27(20):1803-1805
We have developed a spectral interferometric optical coherence tomography (OCT) system with polarization sensitivity that is able to measure a two-dimensional tomographic image by means of one-dimensional mechanical scanning. Our system, which has an axial resolution of 32 mum , calculates the distribution of each element of the Müller matrix of a measured object from 16 OCT images. The OCT system successfully reveals the birefringent nature of human skin tissue.  相似文献   

8.
We present a digital spectral shaping technique to reduce the sidelobes (ringing) of the axial point-spread function in optical coherence tomography for non-Gaussian-shaped source spectra. The spectra of two superluminescent diodes were combined to generate a spectrum with significant modulation. Images of onion cells demonstrate the improved image quality in a turbid biological sample. A quantitative analysis of the accompanying penalty in signal-to-noise ratio is given.  相似文献   

9.
A new method of measurement that essentially combines Fourier-domain optical coherence tomography with spectroscopy is introduced. By use of a windowed Fourier transform it is possible to obtain, in addition to the object structure, spectroscopic information such as the absorption properties of materials. The feasibility of this new method for performing depth-resolved spectroscopy is demonstrated with a glass filter plate. The results are compared with theoretically calculated spectra by use of the well-known spectral characteristics of the light source and the filter plate.  相似文献   

10.
Optical coherence tomography (OCT) relies on interference between a polarized reference and the target reflection. Thus, it has generally been impossible to detect any unpolarized part in the signal. Here, we demonstrate a scheme that overcomes this limitation. Using a combination of heterodyning and filtering, we realize a polarization-sensitive OCT system capable of measuring the full Stokes vector, including the depolarized part. Based on such a system, we perform full Stokesmetric imaging of different layers in a porcine tendon sample. The complete 4 × 4 backscattering Muellermetric images of one layer are acquired and investigated.  相似文献   

11.
We report on a numerical analysis of the temporal and spatial beam properties of nanosecond optical parametric oscillators (OPOs). The analysis is performed for a 355-nm-pumped critically phase-matched OPO of beta-barium borate. The calculations provide detailed information on the dependence of the OPO beam quality (measured by the quality factor M 2) on pump energy. An important result is the strong increase of the M 2 value for pump energies exceeding 1–2 times the energy at threshold. Furthermore, a temporal analysis of single OPO pulses indicates that the M 2 value strongly increases during the first few nanoseconds of the OPO oscillation. This increase is understood by considering the temporal dynamics of the spatial profiles of the OPO signal beam and the depleted pump radiation. Received: 1 April 1999 / Revised version: 26 July 1999 / Published online: 20 October 1999  相似文献   

12.
We report a new molecular contrast optical coherence tomography (MCOCT) implementation that profiles the contrast agent distribution in a sample by measuring the agent's spectral differential absorption. The method, spectra triangulation MCOCT, can effectively suppress contributions from spectrally dependent scatterings from the sample without a priori knowledge of the scattering properties. We demonstrate molecular imaging with this new MCOCT modality by mapping the distribution of indocyanine green, a FDA-approved infrared red dye, within a stage 54 Xenopus laevis.  相似文献   

13.
We demonstrated a method for measurement of central corneal thickness(CCT) with a sub-micrometer sensitivity using a spectral domain optical coherence tomography system without needing a super broad bandwidth light source. By combining the frequency and phase components of Fourier transform, the method is capable of measurement of a large dynamic range with a high sensitivity. Absolute phases are retrieved by comparing the correlations between the detected and simulated interference fringes. The phase unwrapping ability of the present method was quantitatively tested by measuring the displacement of a piezo linear stage. The human CCTs of six volunteers were measured to verify its clinical application. It provides a potential tool for clinical diagnosis and research applications in ophthalmology.  相似文献   

14.
An experimental tracking optical coherence tomography (OCT) system has been clinically tested. The prototype instrument uses a secondary sensing beam and steering mirrors to compensate for eye motion with a closed-loop bandwidth of 1 kHz and tracking accuracy, to within less than the OCT beam diameter. The retinal tracker improved image registration accuracy to <1 transverse pixel (<60 microm). Composite OCT images averaged over multiple scans and visits show a sharp fine structure limited only by transverse pixel size. As the resolution of clinical OCT systems improves, the capability to reproducibly map complex structures in the living eye at high resolution will lead to improved understanding of disease processes and improved sensitivity and specificity of diagnostic procedures.  相似文献   

15.
Spectroscopic optical coherence tomography   总被引:12,自引:0,他引:12  
Spectroscopic optical coherence tomography (OCT), an extension of conventional OCT, is demonstrated for performing cross-sectional tomographic and spectroscopic imaging. Information on the spectral content of backscattered light is obtained by detection and processing of the interferometric OCT signal. This method allows the spectrum of backscattered light to be measured over the entire available optical bandwidth simultaneously in a single measurement. Specific spectral features can be extracted by use of digital signal processing without changing the measurement apparatus. An ultrabroadband femtosecond Ti:Al(2)O(3) laser was used to achieve spectroscopic imaging over the wavelength range from 650 to 1000 nm in a simple model as well as in vivo in the Xenopus laevis (African frog) tadpole. Multidimensional spectroscopic data are displayed by use of a novel hue-saturation false-color mapping.  相似文献   

16.
Second-harmonic optical coherence tomography   总被引:6,自引:0,他引:6  
Jiang Y  Tomov I  Wang Y  Chen Z 《Optics letters》2004,29(10):1090-1092
Second-harmonic optical coherence tomography, which uses coherence gating of second-order nonlinear optical responses of biological tissues for imaging, is described and demonstrated. Femtosecond laser pulses were used to excite second-harmonic waves from collagen harvested from rat tail tendon and a reference non-linear crystal. Second-harmonic interference fringe signals were detected and used for image construction. Because of the strong dependence of second-harmonic generation on molecular and tissue structures, this technique imparts contrast and resolution enhancement to conventional optical coherence tomography.  相似文献   

17.
Xie T  Mukai D  Guo S  Brenner M  Chen Z 《Optics letters》2005,30(14):1803-1805
A fiber-optic-bundle-based optical coherence tomography (OCT) probe method is presented. The experimental results demonstrate this multimode optical fiber-bundle-based OCT system can achieve a lateral resolution of 12 microm and an axial resolution of 10 microm with a superluminescent diode source. This novel OCT imaging approach eliminates any moving parts in the probe and has a primary advantage for use in extremely compact and safe OCT endoscopes for imaging internal organs and great potential to be combined with confocal endoscopic microscopy.  相似文献   

18.
Scanning optical coherence tomography (OCT) is limited in sensitivity and resolution by the restricted focal depth of the confocal detection scheme. Holoscopy, a combination of holography and Fourier-domain full-field OCT, is proposed as a way to detect photons from all depths of a sample volume simultaneously with uniform sensitivity and lateral resolution, even at high NAs. By using the scalar diffraction theory, as frequently applied in digital holographic imaging, we fully reconstruct the object field with depth-invariant imaging quality. In vivo imaging of human skin is demonstrated with an image quality comparable to conventionally scanned OCT.  相似文献   

19.
We present the results of studies of the basic principles and describe the design of a low-coherence two-wavelength interferometer based on polarization-maintaining fiber. The interferometer was developed for optical coherence tomography (OCT) imaging of the internal structure of living biological tissue simultaneously at two wavelengths, 830 and 1300 nm. Images of several sites of living biological tissue are presented and analyzed.  相似文献   

20.
We demonstrate inhibition of the sidelobes of the axial point spread function in optical coherence tomography by shaping the power spectrum of the light source with a remaining power of 4.54 mW. A broadband amplified spontaneous emission source radiating at 1565 +/- 40 nm is employed in a free-space optical coherence tomography system. The axial point spread functions before and after optical spectral shaping are presented. Results show that spectral shaping of the source can inhibit sidelobes of the point spread function up to 12.9 dB, with an associated small increase of 2.2 dB in noise floor in the far field. The effect of spectral shaping on axial resolution is demonstrated according to three metrics. Image quality improvement is also illustrated with optical coherence tomography images of an onion before and after spectral shaping.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号