首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
It is revealed that TlS single crystals exhibit a variable range hopping conduction along a normal to their natural layers at temperatures T ≤ 230 K in a dc electric field and a nonactivated hopping conduction at low temperatures in strong electric fields. Estimates are made for the density of states near the Fermi level (N F = 2.8 × 1020 eV?1 cm?3 and their energy spread (ΔW = 0.02 eV), the localization radius (a = 33 Å), the average jump distance in the region of activated (R av(T) = 40 Å) and nonactivated (R av(F) = 78 Å) hopping conduction, and also the drop in the charge carrier potential energy along the jump distance in an electric field F: eFR = 0.006 and 0.009 eV at F = 7.50 × 103 and 1.25 × 104 V/cm, respectively.  相似文献   

2.
Layered single crystals of the TlGa0.5Fe0.5Se2 alloy in a dc electric field at temperatures ranging from 128 to 178 K are found to possess variable-range-hopping conduction along natural crystal layers through states localized in the vicinity of the Fermi level. The parameters characterizing the electrical conduction in the TlGa0.5Fe0.5Se2 crystals are estimated as follows: the density of states near the Fermi level NF = 2.8 × 1017 eV?1 cm?3, the spread in energy of these states ΔE = 0.13 eV, the average hopping length Rav = 233 Å, and the concentration of deep-lying traps N t = 3.6 × 1016 cm?3.  相似文献   

3.
It is established that variable-range hopping conduction takes place between states localized near the Fermi level in layered TlGaS2 and TlInS2 single crystals both along and across their natural layers in a constant electric field at T⩽200 K. The densities of states near the Fermi level and the hopping distances at different temperature are estimated. The occurrence of activationless hopping conduction is established in TlGaS2 and TlInS2 single crystals in the temperature range 110–150 K. Fiz. Tverd. Tela (St. Petersburg) 40, 612–615 (April 1998)  相似文献   

4.
Samples of the composition TlNiS2 in the hexagonal system with the unit cell parameters a=12.28 Å, c=19.32 Å, and ρ=6.90 g/cm3 are synthesized. The results of the investigation into the electrical and thermoelectrical properties of TlNiS2 samples in the temperature range 80–300 K indicate that TlNiS2 is a p-type semiconductor. It is found that, at temperatures ranging from 110 to 240 K, TlNiS2 samples in a dc electric field possess variable-range-hopping conduction at the states localized in the vicinity of the Fermi level. The density of localized states near the Fermi level is determined to be NF=9×1020 eV?1 cm?3, and the scatter of the states is estimated as J≈2×10?2 eV. In the temperature range 80–110 K, TlNiS2 exhibits activationless hopping conduction. At low temperatures (80–240 K), the thermopower of TlNiS2 is adequately described by the relationship α(T)=A+BT, which is characteristic of the hopping mechanism of charge transfer. In the case when the temperature increases to the temperature of the onset of intrinsic conduction with the activation energy ΔE=1.0 eV, there arise majority intrinsic charge carriers of both signs. This leads to an increase in the electrical conductivity σ and, at the same time, to a drastic decrease in the thermopower α; in this case, the thermopower is virtually independent of the temperature.  相似文献   

5.
The temperature dependences of the conductivity and the thermoelectric coefficient in TlFeS2 and TlFeSe2 samples have been investigated in the temperature range 85–400 K. The variable-range hopping conduction has been established. It is found that the density of localized states N F near the Fermi level is 1.7×1018 and 3.3×1018 eV?1 cm?3, and the average hopping length R is 109 and 104 Å for TlFeS2 and TlFeSe2, respectively. The non-Arrhenius (activationless) behavior of the hopping conductivity is established in the temperature region T<200 K for TlFeS2 and T<250 K for TlFeSe2.  相似文献   

6.
Frequency dependence of the dissipation factor tanδ, the permittivity ɛ, and the ac conductivity σac across the layers in the frequency range f=5×104−3×107 Hz was studied in layered TlGaS2 single crystals. A significant dispersion in tanδ was observed in the frequency range 106−3×107 Hz. In the range of frequencies studied, the permittivity of TlGaS2 samples varied from 26 to 30. In the frequency range 5×104−106 Hz, the ac conductivity obeyed the f 0.8 law, whereas for f>106 Hz σac was proportional to f 2. It was established that the mechanism of the ac charge transport across the layers in TlGaS2 single crystals in the frequency range 5×104−106 Hz is hopping over localized states near the Fermi level. Estimations yielded the following values of the parameters: the density of states at the Fermi level N F=2.1×1018 eV−1 cm−3, the average time of charge carrier hopping between localized states τ=2 μs, and the average hopping distance R=103 ?. __________ Translated from Fizika Tverdogo Tela, Vol. 46, No. 6, 2004, pp. 979–981. Original Russian Text Copyright ? 2004 by Mustafaeva.  相似文献   

7.
A.F. Qasrawi 《哲学杂志》2013,93(22):3027-3035
The effect of photoexcitation on the current transport mechanism in amorphous indium selenide thin films was studied by means of dark and illuminated conductivity measurements as a function of temperature. Analysis of the dark electrical conductivity in the temperature range 110–320 K reveals behaviour characteristic of carriers excited to the conduction band and thermally assisted variable-range hopping (VRH) at the Fermi level above 280 K and below 220 K, respectively. In the temperature range 220–280 K, a mixed conduction mechanism was observed. A conductivity activation energy of ~300 meV (above 280 K), a density of localised states (evaluated assuming a localisation length of 5 Å) of 1.08 × 1021 cm?3 eV?1, an average hopping distance of 20.03 Å (at 120 K) and an average hopping energy of 27.64 meV have been determined from the dark electrical measurements. When the sample was exposed to illumination at a specific excitation flux and energy, the values of the conductivity activation energy, the average hopping energy and the average hopping range were significantly decreased. On the other hand, the density of localised states near the Fermi level increased when the light flux was increased. Such behaviour was attributed to a reversible Fermi level shift on photoexcitation.  相似文献   

8.
The temperature dependences of the electrical resistivity of CuFeTe2 semiconductor single crystals with a layered structure are investigated parallel and perpendicular to the plane of the crystal layers in the temperature range 5–300 K. It is demonstrated that, in both cases, the temperature dependences of the electrical resistivity in the temperature range studied are characterized by two portions associated with different mechanisms of electrical conduction. In the high-temperature range, the electrical conduction is predominantly provided by thermally excited impurity charge carriers in the allowed energy band. In the low-temperature range, the electrical conduction occurs through charge carrier hopping between localized states lying in a narrow energy band near the Fermi level. The activation energy for impurity charge carriers is determined. The density of localized states near the Fermi level, the spread in energies of these states, and the average carrier-hopping distances are estimated for different temperatures  相似文献   

9.
TlInSe2 chain crystals were prepared using the modification of the Bridgman technique. The grown crystals were identified by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDX), and X-ray diffraction (XRD). We investigate the anisotropy of transport properties for the first time for TlInSe2 crystals. Temperature dependence of the dc electrical conductivity, Hall coefficient, Hall mobility, and charge carrier concentration were investigated in the temperature range 184–455 K. The conduction mechanism of TlInSe2 crystals was studied, and measurements revealed that the dc behavior of the grown crystals can be described by Mott’s variable range hopping (VRH) model in the low temperature range, while it is due to thermoionic emission of charge carriers over the chain boundaries above 369 K. The Mott temperature, the density of states at the Fermi level, and the average hopping distance are estimated in the two crystallographic directions. The temperature dependence of the ac conductivity and the frequency exponent, s, is reasonably well interpreted in terms of the correlated barrier-hopping CBH model.  相似文献   

10.
TlGaSe2 and TlGaS2 single crystals were grown by the modified Bridgman-Stockbarger method. We report the result of an experimental study of the optical absorption of TlGaSe2 and TlGaS2 crystals. The absorption measurements were performed in steps of 10 K. The direct and indirect band gaps for TlGaSe2 and TlGaS2 samples were calculated as a function of temperature. The phonon energies in TlGaSe2 and TlGaS2 crystals were calculated as (39±4) and (9±4) meV at 240 K, respectively. At 10 K, direct and indirect band gaps were found as 2.294 and 2.148 eV for TlGaSe2, 2.547 and 2.521 eV for TlGaS2 crystals, respectively. The abrupt changes were observed in the direct and indirect band gaps in the some temperature ranges. These changes were interpreted as phase transformation temperatures. The steepness parameters and Urbach energy for TlGaSe2 and TlGaS2 samples increased with increasing sample temperature in the range (10–320) K.  相似文献   

11.
The long-wavelength tail of the optical absorption in TlGaSe2, crystals at α=30−150cm-1 is shown to obey Urbach's rule in the temperature range 4.2–294°K. The anomalous behaviour of the parameters of this rule suggests the presence of two phase transitions in TlGaSe2 at 246°K and 101°K beside the known phase transitions at 120°K and 107°K. The presence of phase transitions in TlGaSe2 at 246°K and 101°K is also confirmed by means of the heat capacity measurement.  相似文献   

12.
The present paper reports the electrical characterization of nc-CdTe thin films in different temperature ranges. Thin films of nc-CdTe are deposited on the glass substrates by Physical Vapor Deposition (PVD) using the Inert Gas Condensation (IGC) method. The Transmission Electron Microscopy (TEM) studies are made on the CdTe nanocrystals. The surface morphology and structure of the thin films are studied by the Scanning Electron Microscope (SEM) and X-Ray Diffraction (XRD) measurements. Dark conductivity measurements are made on the nc-CdTe thin films in the temperature range 110–370 K in order to identify the conduction mechanism in this temperature range. The obtained results reveal three distinct regions at high, low, and sufficiently low temperature regions with decreasing activation energies. The analysis of the high temperature conductivity data is based on the Seto’s model of thermionic emission. At very low temperatures, dc conductivity (σ d) obeys the law: lnσT 1/2T ?1/4, indicating variable-range hopping in localized states near the Fermi level. The density of the localized states N(E F) and various other Mott’s parameters like the degree of disorder (T O), hopping distance (R), and hopping energy (W) near the Fermi level are calculated using dc conductivity measurements at low temperatures. Carrier type, carrier concentration, and mobility are determined from the Hall measurements. The transient photoconductivity decay measurements are performed on the nc-CdTe thin films at different intensities in order to know the nature of the decay process.  相似文献   

13.
The electrical and magnetic properties of ZnSe single crystals containing disorder have been studied between temperatures 290K and 900K. The study of the magnetic properties has been extended to low temperatures (100K). Paramagnetism has been found to appear at high temperatures (460–900K). From the fact that this paramagnetism is proportional to eE/kT, it is suggested that localized states of single occupancy are created by thermal excitation. The study of the magnetic properties has been of help in ascertaining the nature of the transport (band conduction or hopping conduction) and in finding the hopping energy and excitation energy separately. It has also been shown from this that both band conduction and hopping conduction exist simultaneously in the sample. A study of the thermo electric power (t.e.p.) shows that below 450K current is carried by electrons in the conduction band and above by hopping of holes.  相似文献   

14.
This paper presents the results of dielectric constant and Electron Paramagnetic Resonance (EPR) investigations of Fe3+-doped TlGaSe2 single crystals in the temperature range of 15–300 K. The influence of Fe impurities on dielectric properties and phase transitions of TlGaSe2 crystal has been studied. The results were considered in comparison with earlier observed results from pure TlGaSe2 compounds. We observed the considerable decrease of the dielectric constant as well as the change of the shape of the temperature dependence of the dielectric constant in doped crystals. Some certain significant changes of EPR spectra, which are associated with a strong splitting and appearance of additional resonance lines, were observed at the temperatures below 110 K. Such transformations are considered as the result of non-equivalent displacements of different groups of Tl atoms during the structural phase transitions.  相似文献   

15.
ZnIn2Se4 is of polycrystalline structure in as synthesized condition. It transforms to nanocrystallite structure of ZnIn2Se4 film upon thermal evaporation. Annealing temperatures influenced crystallite size, dislocation density and internal strain. The hot probe test showed that ZnIn2Se4 thin films are n-type semiconductor. The dark electrical resistivity versus reciprocal temperature for planar structure of Au/ZnIn2Se4/Au showed existence of two operating conduction mechanisms depending on temperature. At temperatures >365 K, intrinsic conduction operates with activation energy of 0.837 eV. At temperatures <365 K, extrinsic conduction takes place with activation energy of 0.18 eV. The operating conduction mechanism in extrinsic region is variable range hopping. The parameters such as density of states at Fermi level, hopping distance and average hopping energy have been determined and it was found that they depend on film thickness. The dark current–voltage characteristics of Au/n-ZnIn2Se4/p-Si/Al diode at different temperatures ranging from 293–353 K have been investigated. Results showed rectification behavior. At forward bias potential <0.2 V, thermionic emission of electrons from ZnIn2Se4 film over a potential barrier of 0.28 V takes place. At forward bias potential >0.2 V, single trap space charge limited current is operating. The trap concentration and trap energy level have been determined as 3.12×1019 cm−3 and 0.24 eV, respectively.  相似文献   

16.
DC conductivity measurements on thin films of a-Se80In20−xPbx (where x=0, 2, 6 and 10) are reported in the temperature range 200–400 K. The density of states near the Fermi level is calculated using the DC conductivity (Mott parameters). The conduction in the low-temperature region is found to be due to variable range hopping while that in the high-temperature region is due to thermally assisted tunneling of the carriers in the localized states near the band edge.  相似文献   

17.
Vitrification suppression in the (V2O5)1−x (P2O5)x glasses where x=0.10, 0.15, 0.20, and 0.25 was controlled by changing the rate of quenching glasses. The structure variations occurring in the glasses were detected by differential thermal analysis and optical microscope. The results implied the separation and growth of V2O5 orthorhombic microcrystal in the samples with x=0.10 and 0.15 whereas other samples did not illustrate remarkable changes in their microstructure. However, in temperature range between 300 and 473 K a semiconducting behavior for all samples appears during the study of electrical conductivity-temperature dependence. A decrease in conductivity values accompanied with some variations in activation energies by reducing quenching rate was observed. The conductivity results suggested that the conduction occurs by the phonon assisted hopping of a small polaron between V4+ and V5+ states at relatively higher temperature range above θD/2. Whereas at relatively low temperatures the conduction may occur by electron jumping between filled and empty states at Fermi level in the disordered matrix besides polaronic conduction. Reasonable values for the density of localized states, carrier concentration and carrier mobility were estimated and discussed. Also, dielectric constant and dielectric loss were studied as a function of frequency at different temperatures confirming the structure variations in the glass system.  相似文献   

18.
The electret polarization is investigated in the TlGaSe2 ferroelectric semiconductor. It is proved for the first time that stable internal electric fields associated with residual electret polarization are induced in crystals of the TlGaSe2 ferroelectric semiconductor at temperatures T < 200 K. It is experimentally established that the peak of the pyroelectric current measured in the vicinity of the phase transition to the ferroelectric polar phase depends substantially on the temperature at which the external electric field is switched off when the TlGaSe2 ferroelectric crystal under investigation is preliminarily cooled from room temperature. The results obtained are discussed in the framework of a model according to which internal electret fields are induced by charges localized at different levels in the bulk and on the surface of the TlGaSe2 ferroelectric crystal. These fields drastically change at temperatures in a narrow range near 135 K. The inference is made that a phase transition occurs in the surface layer of the TlGaSe2 crystal at a temperature close to ~135 K.  相似文献   

19.
Frequency dependences of the real (?′) and imaginary (?″) parts of the complex permittivity, the dielectric loss tangent (tanδ), and the ac conductivity (σac) in frequency range f = 5 × 104?3.5 × 107 Hz have been investigated for TlGa1 ? x Er x Se2 crystals of various compositions. It has been established that the relaxation dispersion of ?′ and ?″ takes place for the studied crystals. The influence of the erbium content in the crystals on their dielectric coefficients has been studied. The ac conductivity of the TlGa1 ? x Er x Se2 single crystals in the high-frequency range obeys the law σacf 0.8, which is characteristic of the hopping mechanism of charge transfer over the states localized in the vicinity of the Fermi level. Parameters of the states localized in the band gap of TlGa1 ? x Er x Se2 and the influence of the composition of the crystals on these parameters have been evaluated.  相似文献   

20.
The current-voltage characteristics of Ca4Ga2S7: Eu3+ single crystals are measured for the first time, and the processes affecting these characteristics are analyzed theoretically. It is demonstrated that Ca4Ga2S7: Eu3+ single crystals are high-resistance semiconductors with a resistivity of ~109 Ω cm and a relative permittivity of 10.55. The electrical properties of the studied materials are governed by traps with activation energies of 0.13 and 0.19 eV and a density ranging from 9.5×1014 to 2.7×1015 cm?3. The one-carrier injection is observed in weak electric fields. In electric fields with a strength of more than 4×103 V/cm, traps undergo thermal field ionization according to the Pool-Frenkel mechanism. At low temperatures and strong fields (160 K and 5×104 V/cm), the electric current is most likely due to hopping conduction by charge carriers over local levels in the band gap in the vicinity of the Fermi level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号