首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The complex [Mn(dbm)(2)(py)(2)](ClO(4)) (dbm = anion of 1,3-diphenyl-1,3-propanedione (dibenzoylmethane), py = pyridine) was synthesized and characterized by X-ray crystallography. It has tetragonally distorted geometry with the axial positions occupied by the py ligands and the equatorial positions by the dbm ligands. This mononuclear complex of high-spin Mn(III) (3d(4), S = 2) was studied by high-frequency and -field electron paramagnetic resonance (HFEPR) both as a solid powder and in frozen dichloromethane solution. Very high quality HFEPR spectra were recorded over a wide range of frequencies. The complete dataset of resonant magnetic fields versus transition energies was analyzed using automated fitting software. This analysis yielded the following spin Hamiltonian parameters (energies in cm(-1)): D = -4.504(2), E = -0.425(1), B(4)(0) = -1.8(4) x 10(-4), B(4)(2) = 7(3) x 10(-4), B(4)(4) = 48(4) x 10(-4), g(x) = 1.993(1), g(y) = 1.994(1), and g(z) = 1.983(1), where the B(4)(n) values represent fourth-order zero-field splitting terms that are generally very difficult to extract, even from single-crystal measurements. The results here demonstrate the applicability of HFEPR at high-precision measurements, even for powder samples. The zero-field splitting parameters determined here for [Mn(dbm)(2)(py)(2)](+) are placed into the context of those determined for other mononuclear complexes of Mn(III).  相似文献   

2.
High-frequency and -field electron paramagnetic resonance (HFEPR) spectroscopy of a classical coordination complex, Mn(acac)(3) (Hacac = 2,4-pentanedione), has been performed on both solid powder and frozen solution (in CH(2)Cl(2)/toluene, 3:2 v/v) samples. Parallel mode detection X-band EPR spectra exhibiting resolved (55)Mn hyperfine coupling were additionally obtained for frozen solutions. Magnetic susceptibility and field-dependent magnetization measurements were also made on powder samples. Analysis of the entire EPR data set for the frozen solution allowed extraction of the relevant spin Hamiltonian parameters: D = -4.52(2); |E| = 0.25(2) cm(-1); g(iso) = 1.99(1). The somewhat lower quality solid-state HFEPR data and the magnetic measurements confirmed these parameters. These parameters are compared to those for other complexes of Mn(III) and to previous studies on Mn(acac)(3) using X-ray crystallography, solution electronic absorption spectroscopy, and powder magnetic susceptibility. Crystal structures have been reported for Mn(acac)(3) and show tetragonal distortion, as expected for this Jahn-Teller ion (Mn(3+), 3d(4)). However, in one case, the molecule exhibits axial compression and, in another, axial elongation. The current HFEPR studies clearly show the negative sign of D, which corresponds to an axial (tetragonal) elongation in frozen solution. The correspondence among solution and solid-state HFEPR data, solid-state magnetic measurements, and an HFEPR study by others on a related complex indicates that the form of Mn(acac)(3) studied here exhibits axial elongation in all cases. Such tetragonal elongation has been found for Mn(3+) and Cr(2+) complexes with homoleptic pseudooctahedral geometry as well as for Mn(3+) in square pyramidal geometry. This taken together with the results obtained here for Mn(acac)(3) in frozen solution indicates that axial elongation could be considered the "natural" form of Jahn-Teller distortion for octahedral high-spin 3d(4) ions. The previous electronic absorption data together with current HFEPR and magnetic data allow estimation of ligand-field parameters for Mn(acac)(3).  相似文献   

3.
High-field and frequency electron paramagnetic resonance (HFEPR) of solid (8,12-diethyl-2,3,7,13,17,18-hexamethylcorrolato)manganese(III), 1, shows that in the solid state it is well described as an S = 2 (high-spin) Mn(III) complex of a trianionic ligand, [Mn(III)C(3)(-)], just as Mn(III) porphyrins are described as [Mn(III)P(2)(-)](+). Comparison among the structural data and spin Hamiltonian parameters reported for 1, Mn(III) porphyrins, and a different Mn(III) corrole, [(tpfc)Mn(OPPh(3))], previously studied by HFEPR (Bendix, J.; Gray, H. B.; Golubkov, G.; Gross, Z. J. Chem. Soc., Chem. Commun. 2000, 1957-1958), shows that despite the molecular asymmetry of the corrole macrocycle, the electronic structure of the Mn(III) ion is roughly axial. However, in corroles, the S = 1 (intermediate-spin) state is much lower in energy than in porphyrins, regardless of axial ligand. HFEPR of 1 measured at 4.2 K in pyridine solution shows that the S = 2 [Mn(III)C(3)(-)] system is maintained, with slight changes in electronic parameters that are likely the consequence of axial pyridine ligand coordination. The present result is the first example of the detection by HFEPR of a Mn(III) complex in solution. Over a period of hours in pyridine solution at ambient temperature, however, the S = 2 Mn(III) spectrum gradually disappears leaving a signal with g = 2 and (55)Mn hyperfine splitting. Analysis of this signal, also observable by conventional EPR, leads to its assignment to a manganese species that could arise from decomposition of the original complex. The low-temperature S = 2 [Mn(III)C(3)(-)] state is in contrast to that at room temperature, which is described as a S = 1 system deriving from antiferromagnetic coupling between an S = (3/2) Mn(II) ion and a corrole-centered radical cation: [Mn(II)C(*)(2-)] (Licoccia, S.; Morgante, E.; Paolesse, R.; Polizio, F.; Senge, M. O.; Tondello, E.; Boschi, T. Inorg. Chem. 1997, 36, 1564-1570). This temperature-dependent valence state isomerization has been observed for other metallotetrapyrroles.  相似文献   

4.
A novel, structurally characterized Ni(III) complex of an N-confused porphyrin inner C-oxide has been synthesized from the oxidation of a Ni(II) N-confused porphyrin using OsO4. Crystal data: C53H40N5NiO.CH2Cl2, monoclinic, space group P2/a (No. 13), a=21.229(1) A, b=8.6451(5) A, c=25.762(2) A, beta=93.004(3) degrees, V=4721.6(5) A3, and Z=4.  相似文献   

5.
Hung SW  Yang FA  Chen JH  Wang SS  Tung JY 《Inorganic chemistry》2008,47(16):7202-7206
The crystal structures of diamagnetic dichloro(2-aza-2-methyl-5,10,15,20-tetraphenyl-21-carbaporphyrinato-N,N',N')-tin(IV) methanol solvate [Sn(2-NCH 3NCTPP)Cl 2.2(0.2MeOH); 6.2(0.2MeOH)] and paramagnetic bromo(2-aza-2-methyl-5,10,15,20-tetraphenyl-21-carbaporphyrinato-N,N',N')-manganese(III) [Mn(2-NCH 3NCTPP)Br; 5] were determined. The coordination sphere around Sn (4+) in 6.2(0.2MeOH) is described as six-coordinate octahedron ( OC-6) in which the apical site is occupied by two transoid Cl (-) ligands, whereas for the Mn (3+) ion in 5, it is a five-coordinate square pyramid ( SPY-5) in which the unidentate Br (-) ligand occupies the axial site. The g value of 9.19 (or 10.4) measured from the parallel polarization (or perpendicular polarization) of X-band EPR spectra at 4 K is consistent with a high spin mononuclear manganese(III) ( S = 2) in 5. The magnitude of axial ( D) and rhombic ( E) zero-field splitting (ZFS) for the mononuclear Mn(III) in 5 were determined approximately as -2.4 cm (-1) and -0.0013 cm (-1), respectively, by paramagnetic susceptibility measurements and conventional EPR spectroscopy. Owing to weak C(45)-H(45A)...Br(1) hydrogen bonds, the mononuclear Mn(III) neutral molecules of 5 are arranged in a one-dimensional network. A weak Mn(III)...Mn(III) ferromagnetic interaction ( J = 0.56 cm (-1)) operates via a [Mn(1)-C(2)-C(1)-N(4)-C(45)-H(45A)...Br(1)-Mn(1)] superexchange pathway in complex 5.  相似文献   

6.
High-field and -frequency electron paramagnetic resonance (HFEPR) spectroscopy has been used to study three complexes of high spin Manganese(III), 3d4, S = 2. The complexes studied were tetraphenylporphyrinatomanganese(III) chloride (MnTPPCI), phthalocyanatomanganese(III) chloride (MnPcCl), and (8,12-diethyl-2,3,7,13,17,18-hexamethylcorrolato)manganese(III) (MnCor). We demonstrate the ability to obtain both field-oriented (single-crystal like) spectra and true powder pattern HFEPR spectra of solid samples. The latter are obtained by immobilizing the powder, either in an n-eicosane mull or KBr pellet. We can also obtain frozen solution HFEPR spectra with good signal-to-noise, and yielding the expected true powder pattern. Frozen solution spectra are described for MnTPPCl in 2:3 (v/v) toluene/CH2Cl2 solution and for MnCor in neat pyridine (py) solution. All of the HFEPR spectra have been fully analyzed using spectral simulation software and a complete set of spin Hamiltonian parameters has been determined for each complex in each medium. Both porphyrinic complexes (MnTPPCl and MnPcCl) are rigorously axial systems, with similar axial zero-field splitting (zfs): D approximately -2.3 cm(-1), and g values quite close to 2.00. In contrast, the corrole complex, MnCor, exhibits slightly larger magnitude, rhombic zfs: D approximtely -2.6 cm(-1), absolute value(E) approximately 0.015 cm(-1), also with g values quite close to 2.00. These results are discussed in terms of the molecular structures of these complexes and their electronic structure. We propose that there is a significant mixing of the triplet (S = 1) excited state with the quintet (S= 2) ground state in Mn(III) complexes with porphyrinic ligands, which is even more pronounced for corroles.  相似文献   

7.
8.
The reaction of N-confused tetraphenylporphyrin with IrCl(CO)2(p-toluidine) gave a novel bis[iridium(I)] complex, wherein the confused pyrrole ring took an inverted conformation.  相似文献   

9.
The isolation and structural characterization of [(terpy)Mn(III)(N3)3], complex 1, is reported (terpy = 2,2':6',2' '-terpyridine). Complex 1, a product of the reaction between the mixed-valence dimer [(terpy)(H2O)Mn(III)(O)2Mn(IV)(OH2)(terpy)](NO3)3 and NaN3, crystallizes in a triclinic system, space group P1, a = 8.480(1) A, b = 8.9007(2) A, c = 12.109(2) A, alpha = 93.79(1) degrees, beta = 103.17(1) degrees, gamma = 103.11(1) degrees, and Z = 2. Complex 1 exhibits a Jahn-Teller distortion of the octahedron characteristic of a six-coordinated high-spin Mn(III). A vibrational spectroscopic study was performed. The nu(asym)(N3) mode of complex 1 appears in the IR as a strong band at 2035 cm(-1) with a less intense feature at 2072 cm(-1), and in the FT-Raman as a strong band at 2071 cm(-1) with a weaker broad band at 2046 cm(-1). The electronic properties of complex 1 were investigated using a high-field and high-frequency EPR study (190-475 GHz). The different spin Hamiltonian parameters have been determined (D = -3.29 (+/-0.01) cm(-1), E = 0.48 (+/-0.01) cm(-1), E '= 0.53 (+/-0.01) cm(-1), g(x) = 2.00 (+/-0.005), g(y) = 1.98 (+/-0.005), g(z) = 2.01 (+/-0.005)). These parameters are in agreement with the geometry of complex 1 observed in the crystal structure, a D < 0 related to the elongated distortion, and a value of E/D close to 0.2 as expected from the highly distorted octahedron. The two values of the E-parameter are explained by the presence of two slightly different structural forms of complex 1 in the crystal lattice. A second hypothesis was explored to explain the experimental data. The calculation for the simulation was done taking into account that the g and D tensors are not collinear due to the low symmetry of complex 1. In that case, the spin Hamiltonian parameters found are D = -3.29 (+/-0.01) cm(-1), E = 0.51 (+/-0.01) cm(-1), g(x) = 2.00 (+/-0.005), g(y) = 1.98 (+/-0.005), and g(z) = 2.01 (+/-0.005).  相似文献   

10.
The anisotropic g and hyperfine tensors of the Mn di-micro-oxo complex, [Mn(2)(III,IV)O(2)(phen)(4)](PF(6))(3).CH(3)CN, were derived by single-crystal EPR measurements at X- and Q-band frequencies. This is the first simulation of EPR parameters from single-crystal EPR spectra for multinuclear Mn complexes, which are of importance in several metalloenzymes; one of them is the oxygen-evolving complex in photosystem II (PS II). Single-crystal [Mn(2)(III,IV)O(2)(phen)(4)](PF(6))(3).CH(3)CN EPR spectra showed distinct resolved (55)Mn hyperfine lines in all crystal orientations, unlike single-crystal EPR spectra of other Mn(2)(III,IV) di-micro-oxo bridged complexes. We measured the EPR spectra in the crystal ab- and bc-planes, and from these spectra we obtained the EPR spectra of the complex along the unique a-, b-, and c-axes of the crystal. The crystal orientation was determined by X-ray diffraction and single-crystal EXAFS (Extended X-ray Absorption Fine Structure) measurements. In this complex, the three crystallographic axes, a, b, and c, are parallel or nearly parallel to the principal molecular axes of Mn(2)(III,IV)O(2)(phen)(4) as shown in the crystallographic data by Stebler et al. (Inorg. Chem. 1986, 25, 4743). This direct relation together with the resolved hyperfine lines significantly simplified the simulation of single-crystal spectra in the three principal directions due to the reduction of free parameters and, thus, allowed us to define the magnetic g and A tensors of the molecule with a high degree of reliability. These parameters were subsequently used to generate the solution EPR spectra at both X- and Q-bands with excellent agreement. The anisotropic g and hyperfine tensors determined by the simulation of the X- and Q-band single-crystal and solution EPR spectra are as follows: g(x) = 1.9887, g(y) = 1.9957, g(z) = 1.9775, and hyperfine coupling constants are A(III)(x) = |171| G, A(III)(y) = |176| G, A(III)(z) = |129| G, A(IV)(x) = |77| G, A(IV)(y) = |74| G, A(IV)(z) = |80| G.  相似文献   

11.
12.
13.
An inner- and outer-N coordinated bis-Rh(I) metal complex was obtained from the reaction of N-confused porphyrin and [Rh(CO)2Cl]2 in CH2Cl2 and the structure was confirmed by a single crystal X-ray analysis.  相似文献   

14.
Two tetranuclear Mn complexes with an average Mn oxidation state of +2.5 have been prepared. These valence isomers have been characterized by a combination of X-ray crystallography, X-ray absorption spectroscopy, and magnetic susceptibility. The Mn(II)3Mn(IV) tetramer has the Mn ions arranged in a distorted tetrahedron, with an S = 6 ground spin state, dominated by ferromagnetic exchange among the manganese ions. The Mn(II)2Mn(III)2 tetramer also has a distorted tetrahedral arrangement of Mn ions but shows magnetic behavior, suggesting that it is a single-molecule magnet. The X-ray absorption near-edge structure (XANES) spectra for the two complexes are similar, suggesting that, while Mn XANES has sufficient sensitivity to distinguish between trinuclear valence isomers (Alexiou et al. Inorg. Chem. 2003, 42, 2185), similar distinctions are difficult for tetranuclear complexes such as that found in the photosynthetic oxygen-evolving complex.  相似文献   

15.
Two new series of each of four Cr(III) and Ni(II) imino nitroxide complexes with various kinds of beta-diketonates, [Cr(beta-diketonato)(2)(IM2py)]PF(6), and [Ni(beta-diketonato)(2)(IM2py)] (IM2py = 2-(2'-(pyridyl)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazol-1-oxy)) have been synthesized, and their structures and magnetic and optical properties have been examined. The X-ray analysis demonstrated that a IM2py ligand coordinated to Cr(III) and Ni(II) acts as a five-membered bidentate chelate. The variable-temperature magnetic susceptibility measurements indicated the antiferromagnetic and ferromagnetic interaction of Cr(III) and Ni(II) with IM2py, respectively, giving a variety of the magnetic coupling constant J values with varying the beta-diketonato ligands. The UV-vis shoulders around (19-20) x 10(3) and (17-18) x 10(3) cm(-)(1) for the Cr(III) and Ni(II) complexes, respectively, characteristic of the IM2py complexes were assigned to the metal-ligand charge-transfer transitions, Cr(t(2g))-SOMO(pi*) and Ni(e(g))-SOMO(pi*) MLCT in terms of the resonance Raman spectra and the variable-temperature absorption spectra. The absorption components centered around (13-14) x 10(3) cm(-1) for the Cr(III) and Ni(II) complexes were due to the formally spin-forbidden d-d transition within the t(2g) and e(g) subshells, associated with the intensity enhancement. The spectroscopic behavior with varying the beta-diketonato ligands is discussed in connection with the antiferromagnetic or ferromagnetic coupling constant J values on the basis of the exchange mechanism along with the coligand effect.  相似文献   

16.
A pseudo-octahedral complex of high-spin Fe(II), bis(2,2'-bi-2-thiazoline)bis(isothiocyanato)iron(II), which has a cis-FeN'2N4 chromophore, has been investigated by high-frequency, high-field electron paramagnetic resonance (HFEPR). Complementary M?ssbauer and DC magnetic susceptibility studies were also performed. HFEPR spectra of powder samples were recorded at frequencies up to 700 GHz and over a magnetic field range of 0-25 T. Analysis of the field-frequency data set yields the following set of spin Hamiltonian parameters for S = 2: D = +12.427(12) cm-1, E = +0.243(3) cm-1; gx = 2.147(3), gy = 2.166(3), gz = 2.01(1). The parameters are analyzed by use of a simple crystal-field model. This study represents the first precise determination by HFEPR of spin Hamiltonian parameters in six-coordinate high-spin Fe(II) and indicates the applicability of HFEPR to the study of high-spin Fe(II) in coordination complexes and biological model compounds.  相似文献   

17.
18.
19.
The reaction of [Mn(TF(4)TMAP)](CF(3)SO(3))(5) (TF(4)TMAP=meso-tetrakis(2,3,5,6-tetrafluoro-N,N,N-trimethyl-4-aniliniumyl)porphinato dianion) with H(2)O(2) (2 equiv) at pH 10.5 and 0 degrees C yielded an oxomanganese(V) porphyrin complex 1 in aqueous solution, whereas an oxomanganese(IV) porphyrin complex 2 was generated in the reactions of tert-alkyl hydroperoxides such as tert-butyl hydroperoxide and 2-methyl-1-phenyl-2-propyl hydroperoxide. Complex 1 was capable of epoxidizing olefins and exchanging its oxygen with H(2) (18)O, whereas 2 did not epoxidize olefins. From the reactions of [Mn(TF(4)TMAP)](5+) with various oxidants in the pH range 3-11, the O-O bond cleavage of hydroperoxides was found to be sensitive to the hydroperoxide substituent and the pH of the reaction solution. Whereas the O-O bond of hydroperoxides containing an electron-donating tert-alkyl group is cleaved homolytically, an electron-withdrawing substituent such as an acyl group in m-chloroperoxybenzoic acid (m-CPBA) facilitates O-O bond heterolysis. The mechanism of the O-O bond cleavage of H(2)O(2) depends on the pH of the reaction solution: O-O bond homolysis prevails at low pH and O-O bond heterolysis becomes a predominant pathway at high pH. The effect of pH on (18)O incorporation from H(2) (18)O into oxygenated products was examined over a wide pH range, by carrying out the epoxidation of carbamazepine (CBZ) with [Mn(TF(4)TMAP)](5+) and KHSO(5) in buffered H(2) (18)O solutions. A high proportion of (18)O was incorporated into the CBZ-10,11-oxide product at all pH values but this proportion was not affected significantly by the pH of the reaction solution.  相似文献   

20.
From the reaction of [Mn(III)(3)(micro-O)(micro-CH(3)CO(2))(6)]CH(3)CO(2) (manganese(III) acetate) and 2-anilino-4,6-di-tert-butylphenol (1:3) in methanol under anaerobic conditions, dark brown-black crystals of [Mn(III)(L(ISQ))(2)(L(AP))] (1) were obtained in approximately 30% yield. (L(AP))(-) represents the closed-shell o-aminophenolate(-) form of the above ligand, and (L(ISQ))(-) is the monoanionic pi radical form o-iminobenzosemiquinonate(-) (S(rad) = 1/2). Complex 1 can be deprotonated at the (L(AP))(-) ligand and one-electron-oxidized by air, yielding crystals of [Mn(IV)(L(ISQ))(2)(L(AP)-H)] (2), where (L(AP)-H)(2-) represents the closed-shell, dianionic o-amidophenolate(2-) form of the above ligand. The structures of 1 and 2 have been determined by X-ray crystallography at 100 K. The protonation and oxidation levels of the ligands and of the metal ions have been unequivocally established: both complexes contain two pi radical ligands, 1 contains a Mn(III) ion, and 2 contains a Mn(IV) ion. The spins of the radicals (S(rad) = 1/2) couple strongly antiferromagnetically with the d(4) and d(3) configuration of the Mn ions in 1 and 2, respectively, yielding the observed ground states of S = 1 for 1 and S = (1)/(2) for 2. This has been established by temperature-dependent susceptibility measurements (2-300 K) and S- and X-band EPR spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号