首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The standard enthalpies of formation of liquid and gaseous octachlorotrisilane were estimated, Δf H o (298.15, Si3Cl8, g) = ?1397(9) kJ/mol and Δf H o (298.15, Si3Cl8, l) = ?1447(9) kJ/mol. The decomposition of Si3Cl8 over the temperature range 400–1000 K was studied theoretically.  相似文献   

2.
The values of ΔH°298, S°298, H°298H°0, T, ΔH fus, and C p(T), as well as the temperature dependences of the Gibbs energy function, are calculated for Bi8O11 oxide by proven computational methods.  相似文献   

3.
The low-temperature heat capacity of Na2Lu (MoO4)(PO4) was measured by adiabatic calorimetry in the range of 7.47–345.74 K. The experimental data were used to calculate the thermodynamic functions of Na2Lu (MoO4)(PO4). At 298.15 K, the following values were obtained: C p 0 (298.15 K) = 237.7 ± 0.1 J/(K mol), S 0(298.15 K) = 278.1 ± 0.8 J/(K mol), H 0(298.15 K) ? H 0 (0 K) = 42330 ± 20 J/mol, and Φ0(298.15 K) = 136.1 ± 0. 3 J/(K mol). A heat capacity anomaly was found in the range of 10-67 K with a maximum at T tr = 39.18 K. The entropy and enthalpy of transition are ΔS = 12.39 ± 0.75 J/(K mol) and ΔH = 403 ± 16 J/mol. The thermal investigation of sodium lutetium molybdate phosphate in the high-temperature range (623–1223 K) was performed using differential scanning calorimetry. It was found that during melting in the range of 1030–1200 K, Na2Lu(MoO4)(PO4) degrades to simpler compounds; the degradation scenario is verified by X-ray powder diffraction.  相似文献   

4.
(U)PBE0/cc-pVDZ method is used to study the structure of C60Cl30, C60(OH)30 molecules and Fe@C60(OH)30 endocomplex. The triplet state of the endocomplex is shown to be the lowest in energy among its four states corresponding to different spin multiplicities and positions of Fe nucleus within the fullerene cavity. This state is characterized by bonding between the iron atom and one of two benzenoid cycles of the carbon cage, six internuclear Fe–C distances (208 pm), and 1s22s22p63s23p63d7.24s0.14p0.3 electron configuration of iron with spin population of 2.36.  相似文献   

5.
The DienH3[PtCl6]Cl complex was synthesized, and its crystal structure was determined. Crystal data for C4H16Cl7N3Pt: a = 6.8831(3) Å, b = 23.2767(12) Å, c = 9.6058(4) Å, = 90.593(2)°, V = 1538.92(12) Å3, space group P2(1)/n, Z = 4, ρcalc = 2.371 g/cm3.  相似文献   

6.
The KPb2Cl5 and KPb2Br5 crystals are monoclinic (P21/c) with a microtwinned structure. X-ray analysis of chloride resulted in the parameters a = 8.854(2) Å, b = 7.927(2) Å, c = 12.485(3) Å; β = 90.05(3)°, dcalc = 4.78(1) g/cm3 (STOE STADI4, MoKα, 2θmax = 80°), R1 = 0.0702 for 4094 F ≥ 4 σ(F) reflections. For bromide, a = 9.256(2) Å, b = 8.365(2) Å, c = 13.025(3) Å; β = 90.00(3)°, dcalc = 5.62(1) g/cm3 (Bruker P4, MoKα, 2θmax = 70°), R1 = 0.0692 for 3076 F ≥ 4 (F) reflections.  相似文献   

7.
The temperature dependence of the heat capacity C p o of the [(Me3Si)7C60]2 fullerene complex was measured for the first time using precision adiabatic vacuum calorimetry over the temperature range 6.7–340 K and high-accuracy differential scanning calorimetry at 320–635 K. For the most part, the error in the C p o values was about ±0.5%. An irreversible endothermic effect caused by the splitting of the dimeric bond between fullerene fragments and the thermal decomposition of the complex was observed at 448–570 K. The thermodynamic characteristics of this transformation were calculated and analyzed. Multifractal analysis of the low-temperature (T < 50 K) heat capacity was performed, and conclusions were drawn concerning the character of the heterodynamicity of the structure. The experimental data obtained were used to calculate the standard thermodynamic functions C p o (T), H o (T) ? H o (0), S o (T) ? S o (0), and G o (T) ? H o (0) over the temperature range from T → 0 to 445 K and estimate the standard entropy of formation of the compound from simple substances at 298.15 K. The standard thermodynamic properties of [(Me3Si)7C60]2 are compared with those of the (C60)2 dimer, the [(η6-Ph2)2Cr]+[C60]?? fulleride, and the initial C60 fullerene.  相似文献   

8.
Novel complex salts [Au(en)2]Cl(ReO4)2 (I) and [Au(en)2](ReO4)3 (II), en = ethylenediamine, are obtained. Their crystal structures are determined by single crystal X-ray diffraction. Complex I crystallizes in the triclinic crystal system: a = 6.2172(7) Å, b = 7.1644(8) Å, c = 8.8829(8) Å, α = 96.605(4)°, β = 110.000(4)°, γ = 97.802(4)°, P-1 space group, Z = 1, d x = 3.905 g/cm3; complex II crystallizes in the monoclinic crystal system: a = 15.244(2) Å, b = 7.6809(8) Å, c = 9.3476(12) Å, β = 127.004(3)°, C2 space group, Z = 4, d x = 4.057 g/cm3.  相似文献   

9.
Equilibrium geometric parameters, normal mode frequencies and intensities in IR spectra, atomization enthalpy, and relative energies of low-lying electronic states of scandium fluoride molecules (ScF, ScF2, and ScF3) are calculated by the coupled-cluster method (CCSD(T)) in triple-, quadruple, and quintuple-zeta basis sets with the subsequent extrapolation of the calculation results to the complete basis set limit. The ScF molecule is also studied by the CCSDT technique. The error in the approximate calculation of triple excitations in the CCSD(T) method does not exceed 0.002 Å for the equilibrium internuclear distance R e, 4 cm?1 for the vibrational frequency, and 0.2 kcal/mol for the dissociation energy of the molecule. In the ground electronic state \(\tilde X^2 \) A 1(C 2ν ) of ScF2 molecules, R e(Sc-F) = 1.827 Å and αe(F-Sc-F) = 124.2°; the energy barrier to bending (linearization) h = E min(D g8h ) ? E min(C) = 1652 cm?1. The relative energies of Ã2Δ g and \(\tilde B^2 \)Π g electronic states are 3522 cm?1 and 14633 cm?1 respectively. The bond distance in the ScF3 molecule (\(\tilde X^1 \) A1, D 3h ) is refined: R e(Sc-F) = 1.842 Å. The atomization enthalpies Δat H 298 0 of ScF k molecules are 139.9 kcal/mol, 289.0 kcal/mol, and 444.8 kcal/mol for k = 1, 2, 3 respectively.  相似文献   

10.
The Tl-Te-Cl system was studied in the Tl-TlCl-Te composition region by differential thermal analysis, X-ray powder diffraction, and emf and microhardness measurements. A series of polythermal sections, an isothermal section at 400 K, and a projection of the liquidus surface of the phase diagram were constructed. The ternary compound Tl5Te2Cl characterized by a wide homogeneity region and incongruent melting by a syntectic reaction at 708 K was shown to exist. This compound was found to crystallize in tetragonal lattice (space group I4/mcm) with the parameters a = 8.921 Å, c = 12.692 Å, Z = 4. Wide phase separation regions were also found in the system, including a three-phase separation region in the Tl-TlCl-Tl2Te subsystem. Regions of primary crystallization of phases, and the types and coordinates of in- and monovariant equilibria in the T-x-y diagram were determined. From emf measurement data, the standard thermodynamic functions of formation and the standard entropy were calculated for the compound Tl5Te2Cl, as follows: ?ΔG 298 0 = 355.9 ± 1.1 kJ/mol, ?ΔH 298 0 = 377.1 ± 5.0 kJ/mol, and S 298 0 = 474.1 ± 6.8 J/(mol K).  相似文献   

11.
The [Ir(NH3)5Cl]2[OsCl6]Cl2 binary complex salt has been prepared, and its structure was investigated by single crystal X-ray diffraction. Crystal data: a = 11.1901(13) Å, b = 7.9138(13) Å, c = 13.4384(18) Å; β = 99.640(3)°, V = 1190.0(2), space group C2/m, Z = 2, FW = 1099.47, d x = 3.068 g/cm3. Thermolysis products of [Ir(NH3)5Cl]2[OsCl6]Cl2, [Ir(NH3)5Cl][OsBr6], (NH4)2[OsCl6]x[IrCl6]1?x , and K2[OsCl6]x[IrCl6]1?x were studied by X-ray phase analysis; the unit cell parameters were refined, and the dependence of volume per atom (V/Z) on the composition of the Ir Os1?x solid solution has been plotted.  相似文献   

12.
Macrocyclic and supermolecular complexes [Cu2(NiL)2Cl4] (I) and [Cd2(CuL)2Cl4] (II) (H2L = 2,3-dioxo-5,6,14,15-dibenzo-1,4,8,12-tetraazacyclo-pentadeca-7,13-diene) have been synthesized and structurally determined by X-ray diffraction and IR spectrum. Complex I crystallizes in the monoclinic system with P21/n group, a = 10.9019(15), b = 14.3589(19), c = 12.4748(17) 0A, β = 108.645(2)°, Z = 4. Complex II crystallizes in the monoclinic system with P21/n group, a = 10.9784(16), b = 14.580(2), c = 12.8904(18) Å, β = 109.339(2)°, Z = 4.  相似文献   

13.
The crystal and molecular structure of doubly protonated tetraazamacrocyclic complex of gold(III) [Au(C14H24N4)][H3O](ClO4)4 has been determined. The crystals are monoclinic: a = 11.158(2) Å, b = 8.243(1) Å, c = 14.756(2) Å; β = 98.65(1)°, V = 1341.8(3) Å3, Z = 2, ρ(calc) = 1.134 g/cm3, space group P21/n. The structure is built of almost flat centrosymmetrical Au(C14H24N4)]3+ and [H3O]+ cations and [ClO4]? anions. The gold atom is coordinated with four nitrogen atoms of the ligand forming a flat square. The coordinated ligand is protonated at its γ-carbon atoms of the two six-membered chelate rings. The Au-N bond lengths are almost identical (the mean value is 1.994 Å). The six-membered rings of the complex contain C=N diimine bonds. The [H3O]+ oxonium ion has H-bonds with the oxygen atoms of perchlorate ions.  相似文献   

14.
The B3LYP/6-311++G(3df,3pd) DFT method was used to determine the geometry and vibrational frequencies for the formamide, formaldoxime, nitrosomethane, oxaziridine, and formimide. The potential energy functions of the hindered internal rotations were calculated. The conformers of formaldoxime and formimide were determined. For all the molecules, including the conformers, the thermodynamic characteristics Δf H° (298 K), S°(298 K), C p(298 K), and Δf G° (298 K) were determined. The temperature dependences C p(T) within 298–1500 K were represented in the form of cubic polynomials.  相似文献   

15.
Thermal decomposition of [Pt(NH3)4][ReHlg6] binary complex salts (Hlg = Cl, Br) in a hydrogen atmosphere has been studied. Polycrystal X-ray diffractometry indicated that two-phase metallic systems are the final products of thermolysis. Structure refinement was performed for [Pt(NH3)4][ReCl6] by the combined technique involving decomposition of the diffractogram into individual reflections, isolation of reflections most sensitive to the position of separate light atoms, and full-profile analysis. Crystal data for PtReN4Cl6H12: a = 11.616(1) Å, b = 10.998(1) Å, c = 10.377(1) Å, V = 1148.1 Å3, space group Cmca, Z = 4, d x = 3.831 g/cm3. The indices are Rp = 5.48%, Rwp = 10.01%, R(F2) = 12.62%. The coordination polyhedron of Re is an almost regular octahedron: Re-Cl 2.34–2.36 Å, ∠ Cl-Re-Cl 86.9–90.3°; the coordination polyhedron of Pt is a square: Pt-N 2.04 Å, ∠N-Pt-N 90.4°.  相似文献   

16.
Single crystals of two new mercury thiohalides of the composition Hg3S2Cl2? xBrx(x = 0.5) have been grown from gas phase and studied by X-ray crystallography. Structure refinement for monoclinic (I) and cubic (II) phases (I: a = 16.841(2) Å, b = 9.128(2) Å, c = 9.435(4) Å; β = 90.080(10)°, V = 1450.3(7) Å3, space group C2/m, Z = 8, R = 0.0528; II: a = 18.006(2) Å, V = 5837.8(11) Å3, space group \(Pm\bar 3n\), Z = 32, R = 0.0503) clearly shows that they are polymorphs of the same composition Hg3S2Cl1.5Br0.5. The monoclinic modification I is similar to the synthetic phases γ-Hg3S2Cl2, β-Hg3S2Br2, Hg3Se2Br2 and to the analogue of radtkeite mineral, Hg3S2ClI. The modification II is isostructural to the synthetic β-Hg3S2Cl2. In both structures, each S atom coordinates three Hg atoms with the formation of pyramidal SHg3 units (Hg-S 2.37–2.48 Å; HgSHg 93.1–97.5 ). The SHg3 units are linked through Hg vertices into corrugated layers [Hg12S8]∞∞ (I) and isolated cubic groups [Hg12S8] (II). Similarly to other mercury chalcohalides, the crystal structures are basically determined by the halogen atoms which form a cubic sublattice incorporating the Hg-S moieties.  相似文献   

17.
Adiabatic calorimetry is used to measure the low-temperature heat capacity of Na2Er(MoO4)(PO4)from 6.41 to 347.87 K. Experimental data are used to calculate the thermodynamic functions of Na2Er(MoO4)(PO4), which at 298.15 K are as follows: C p 0 (298.15 K) = 243,3 ± 0.4 J/(K mol), S 0(298.15 K) = 312.8 ± 0.8 J/(K mol), H 0(298.15 K) ? H 0(0 K) = 45280 ± 90 J/mol, and Φ0(298.15 K) = 136.1 ± 0.3 J/(K mol). A diffuse heat-capacity anomaly associated with splitting of the Stark levels (Schottky anomaly) is discovered in the low-temperature region.  相似文献   

18.
The heat capacities of Pb2V2O7 and Pb3(VO4)2 as a function of temperature in the range 350–965 K have been studied by the differential scanning calorimetry method. The CP = f(T) curve for Pb2V2O7 is described by the equation Cp = (230.76 ± 0.51) + (73.60 ± 0.50)×10-3T ? (18.38 ± 0.54)×105T-2 in the entire temperature range. For Pb3(VO4)2, there is a well-pronounced extreme point in the CP = f(T) curve at T = 371.5 K, which is caused by the existence of a structural phase transition. The thermodynamic properties of the oxide compounds have been calculated.  相似文献   

19.
Gas-phase electron diffractometry was used to study the molecular structure of N,N′-ethylenebis(salicylaldiminato)nickel(II), NiO2N2C16H14, [hereinafter Ni(salen)] at 583(5) K. The molecule has C 2 symmetry with a practically planar structure of the NiN2O2 coordination unit and with internuclear distances r α (Ni-O) = 1.882(21) Å and r α (Ni-N) = 1.889(22) Å. The results of B3LYP/CEP-31G molecular structure calculations are in good agreement with experimental data, whereas the RHF/CEP-31G method significantly overestimates the Ni-N internuclear distance and gives worse results for other structural parameters. According to 3LYP/CEP-31G calculations, the 1 A low-spin state is 28 kJ/mole lower in energy than the 3 B high-spin state.  相似文献   

20.
Unsaturated AlBr 3 vapor pressure was measured over the temperature and pressure ranges 560–845 K and 54–145 torr by the static method using a quartz diaphragm pressure gauge with increased sensitivity (the confidence interval of pressure, including thermal drift of zero pressure gauge point, was 0.3 torr, and that of temperature, 0.3 K). Two equilibrium models were considered, one including AlBr3 and Al2Br6 and the other, AlBr3, Al2Br6, and Al3Br9. The molecular constants of all vapor constituents were determined using density functional theory at the B3LYP/6-31G(d,p) level. The thermodynamic functions of all bromides were calculated in the rigid rotator-harmonic oscillator approximation. The enthalpies of independent equilibria for each model were determined by minimizing the residual sum of the squares of pressure discrepancies. According to the first model, 0.5Al2Br6 = AlBr3, ΔH o(298.15) = 13629.1 ± 9 cal/mol. According to the second model, 0.5Al2Br6 = AlBr3, ΔH o(298.15) = 13638.8 ± 8 cal/mol, and 1.5Al2Br6 = Al3Br9, ΔH o(298.15) = ?8528 ± 800 cal/mol. The second model, for which the variance of pressure differs insignificantly from the experimental variance of pressure, should be given preference.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号