首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Based on the three-dimensional quasi-static general solution of the transversely isotropic pyroelectric material, the Green's function for an infinite transversely isotropic pyroelectric material under a step point heat source is presented in this paper. Firstly, a suitable function with an undetermined constant is constructed. Secondly, the Green's function can be obtained by substituting this function into the general solution. The undetermined constant can be determined by the heat conservation equation. Finally, the numerical results are shown in form of contours at the different times.  相似文献   

2.
The present paper deals with the moving heat source response in a homogeneous, isotropic, micropolar semi-infinite medium in the presence of a finite rotation about its axis. In this context, two-temperature generalized thermoelasticity theory has been considered. In order to obtain the physical aspects of displacement, microrotation, stress distribution and temperature changes, a complex quartic equation has been solved by employing Descartes’ algorithm with the help of an irreducible Cardan’s method. To illustrate the analytical developments, the numerical solutions have been carried out for aluminum–epoxy composite, and the variations in displacement, microrotation, stress distribution and temperature changes have been shown graphically. This work may find applications in geophysics.  相似文献   

3.
横观各向同性饱和地基上无限板的稳态振动   总被引:1,自引:0,他引:1  
研究了横观各向同性饱和土地基上无限板的稳态振动问题. 基于直角坐标系下横观各向同性饱和介质Biot波动方程的一般解,采用双重Fourier积分变换技术,建立了饱和地基与无限矩形板相互作用的动力方程,利用数值方法求解该方程,得到任意谐振荷载作用下饱和半空间体上无限板稳态响应的一般解. 数值结果表明,横观各向同性饱和地基上无限板的振动与各向同性饱和地基上的无限板的振动特性存在明显差异.  相似文献   

4.
黄义  王小岗 《力学季刊》2003,24(4):552-559
基于双重Fourier变换技术,成功求解了直角坐标系下,横观各向同性弹性饱和多孔介质的三维Biot动力方程,得到了以固体骨架位移分量和孔隙流体压力为基本未知量的积分形式一般解.进而,用一般解给出了饱和介质的总应力分量表达式。在此基础上,研究了在任意分布的表面竖向和水平谐振力作用下,横观各向同性饱和半空间体的动力响应问题。数值结果表明,采用各向同性饱和介质的动力学模型,不能准确描述具有明显各向异性特性的饱和土地基的动力性能。  相似文献   

5.
吴迪  赵宝生 《应用力学学报》2012,29(4):349-352,481
为了得到精确的应力场、位移场、温度场,将扭转圆轴的精化理论研究方法推广到轴对称横观各向同性热弹性圆柱。利用Bessel函数以及轴对称横观各向同性热弹性圆柱的通解,给出了轴对称横观各向同性热弹性圆柱的分解定理。根据柱面齐次边界条件获得了精确的精化方程,精化方程可以分解为一阶方程、超越方程、温度方程,从而将横观各向同性热弹性圆柱的轴对称问题分解为轴向拉压问题、超越问题、热-应力耦合问题。超越部分对应端部自平衡情况,可以清晰地了解到端部应力分布对内部应力场的影响,热-应力耦合部分对应无外加应力场时圆柱内部因温度变化引起的热应力。  相似文献   

6.
In this paper, a Kadomtsev–Petviashvili–Boussinesq-like equation in (3+1)-dimensions is firstly introduced by using the combination of the Hirota bilinear Kadomtsev–Petviashvili equation and Boussinesq equation in terms of function f. And then a direct bilinear Bäcklund transformation of this new model is constructed, which consists of seven bilinear equations and ten arbitrary parameters. Based on this constructed bilinear Bäcklund transformation, some classes of exponential and rational traveling wave solutions with arbitrary wave numbers are presented.  相似文献   

7.
The two-dimensional Broadwell model of discrete kinetic theory is studied in order to clarify the physical relevance of its solutions in comparison to the solutions of the continuous Boltzmann equation. This is achieved by determining completely, in closed form, all non-stationary potential flows with steady limiting conditions and isotropic pressure tensor at infinity. Several classes of exact solutions are also constructed when some of the above hypotheses are dropped. Most results are made possible by suitable transformations, which reduce essentially a complicated overdetermined system of partial differential equations to solving explicitly a Liouville equation. The structure of the obtained solutions, and especially the unphysical features that they exhibit, are finally commented on. It is remarkable that, for the problem considered here, there is no solution showing the typical qualitative features which characterize the continuous Boltzmann equation.  相似文献   

8.
With the aid of a method of displacement potentials, an efficient and accurate analytical derivation of the three-dimensional dynamic Green’s functions for a transversely isotropic multilayered half-space is presented. Constituted by proper algebraic factorizations, a set of generalized transmission–reflection matrices and internal source fields that are free of any numerically unstable exponential terms are proposed for effective computations of the potential solution. Three-dimensional point-load Green’s functions for stresses and displacements are given, for the first time, in the complex-plane line-integral representations. The present formulations and solutions are analytically in exact agreement with the existing solutions given by Pak and Guzina (2002) for the isotropic case. For the numerical computation of the integrals, a robust and effective methodology which gives the necessary account of the presence of singularities including branch points and poles on the path of integration is laid out. A comparison with the existing numerical solutions for multilayered isotropic half-space is made to confirm the accuracy of the numerical solutions.  相似文献   

9.
This study presents two-dimensional explicit full-field solutions of transversely isotropic magnetoelectroelastic bimaterials subjected to generalized line forces and edge dislocations using the Fourier-transform technique. One of the major objectives of this study is to analyze the physical meaning and the structure of the solution. Complete solutions for this problem consist only of the simplest solutions for an infinite medium. The solutions include Green's function of originally applied singularities in an infinite medium and thirty-two image singularities which are induced to satisfy interface continuity conditions. It is shown that the physical meaning of the solution is the image method. The mathematical method used in this study provides an automatic determination for the locations and magnitudes of image singularities. The locations and magnitudes of image singularities are dependent on the roots of the characteristic equation for bimaterials. The number and distribution for image singularities are discussed according to characteristic roots features. With the aid of the generalized Peach–Koehler formula, the explicit expressions of image forces acting on generalized edge dislocations are easily derived from the full-field solutions of the generalized stresses. Numerical results for the full-field distributions of stresses, electric fields, and magnetic fields in bimaterials are presented. The image forces and equilibrium positions of one dislocation, two dislocations, and an array of dislocations are presented by numerical calculations and are discussed in detail.  相似文献   

10.
Three different structures of the evolution equation for the rest stress are derived. They correspond to different models of viscoplastic response, constructed by three-dimensional generalization of simple one-dimensional rheological models. Isotropic, kinematic and combined isotropic–kinematic hardening, with an evolution equation for the back stress, are incorporated in the constitutive framework. The results may be of interest in the analytical and numerical studies of the rate-dependent inelastic response.  相似文献   

11.
Based on the Bhatnagar–Gross–Krook (BGK) Boltzmann model equation, the unified simplified velocity distribution function equation adapted to various flow regimes can be presented. The reduced velocity distribution functions and the discrete velocity ordinate method are developed and applied to remove the velocity space dependency of the distribution function, and then the distribution function equations will be cast into hyperbolic conservation laws form with non‐linear source terms. Based on the unsteady time‐splitting technique and the non‐oscillatory, containing no free parameters, and dissipative (NND) finite‐difference method, the gas kinetic finite‐difference second‐order scheme is constructed for the computation of the discrete velocity distribution functions. The discrete velocity numerical quadrature methods are developed to evaluate the macroscopic flow parameters at each point in the physical space. As a result, a unified simplified gas kinetic algorithm for the gas dynamical problems from various flow regimes is developed. To test the reliability of the present numerical method, the one‐dimensional shock‐tube problems and the flows past two‐dimensional circular cylinder with various Knudsen numbers are simulated. The computations of the related flows indicate that both high resolution of the flow fields and good qualitative agreement with the theoretical, DSMC and experimental results can be obtained. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

12.
This paper derives an exact solution for the non-uniform stress and displacement fields within a finite, transversely isotropic, and linear elastic cylinder under compression with a kind of radial constraint induced by friction between the end surfaces of the cylinder and the loading platens. The main feature of the present work is the introduction of a general solution form for Lekhnitskii’s stress function such that the governing equation and all end and curved boundary conditions of the cylinder are satisfied exactly. Two different solutions were obtained corresponding to the real or complex characteristic roots of the governing equation, depending on the combination of the elastic material constants. The solution by Watanabe [Watanabe, S., 1996. Elastic analysis of axi-symmetric finite cylinder constrained radial displacement on the loading end. Structural Engineering/Earthquake Engineering JSCE 13, 175s–185s] for isotropic cylinders under compression test can be recovered as a special case. Our numerical results show that both the non-uniform stress distribution and the difference between the apparent and the true Young’s moduli of the cylinder are very sensitive to the anisotropy of Young’s moduli, Poisson’s ratios and shear moduli. A more distinct bulging shape of the cylinder is expected when anisotropy in shear modulus is strong, the cylinder is relatively short, and the end constraint is large. The bulging shape, however, does not depend strongly on anisotropy of either Poisson’s ratio or Young’s modulus.  相似文献   

13.
Within the Stokes film approximation, unsteady spreading of a thin layer of a heavy viscous fluid along a horizontal superhydrophobic surface is studied in the presence of a given localized mass supply in the film. The forced (induced by the mass supply) spreading regimes are considered, for which the surface tension effects are insignificant. Plane and axisymmetric flows along the principal direction of the slip tensor of the superhydrophobic surface are studied, when the corresponding slip tensor component is either a constant or a power function of the spatial coordinate, measured in the direction of spreading. An evolution equation for the film thickness is derived. It is shown that this equation has self-similar solutions of a source type. The examples of self-similar solutions are constructed for power and exponential time dependences of mass supply. In the final part of the paper, some of the solutions constructed are generalized to the case of a weak dependence of the flow on the second spatial coordinate, caused by a slight variability of the slip coefficient in the direction normal to that of spreading. The constructed self-similar solutions can be used for experimental determination of the parameters important for hydrodynamics, e.g. the slip tensor components of commercial superhydrophobic surfaces.  相似文献   

14.
A new integrable equation is constructed by combining the recursion operator of the modified Calogero–Bogoyavlenskii–Schiff equation and its inverse recursion operator. The Painlevé is performed to demonstrate the complete integrability of the newly developed equation. Multiple-soliton solutions are depicted as manifestation of the integrability. We further show that this equation enjoys a variety of soliton solutions that include kinks, peakon, cuspon.  相似文献   

15.
We use the compact harmonic general solutions of transversely isotropic thermoelastic materials to construct the three-dimensional fundamental solutions for a steady point heat source in an infinite transversely isotropic thermoelastic material and a steady point heat source on the surface of a semi-infinite transversely isotropic thermoelastic material by three newly introduced harmonic functions, respectively. All components of coupled field are expressed in terms of elementary functions and are convenient to use. Numerical results for hexagonal zinc are given graphically by contours.  相似文献   

16.
A new integral equation formulation of two-dimensional infinite isotropic medium (matrix) with various inclusions and cracks is presented in this paper. The proposed integral formulation only contains the unknown displacements on the inclusion–matrix interfaces and the discontinuous displacements over the cracks. In order to solve the inclusion–crack problems, the displacement integral equation is used when the source points are acting on the inclusion–matrix interfaces, whilst the stress integral equation is adopted when the source points are being on the crack surfaces. Thus, the resulting system of equations can be formulated so that the displacements on the inclusion–matrix interfaces and the discontinuous displacements over the cracks can be obtained. Based on one point formulation, the stress intensity factors at the crack tips can be achieved. Numerical results from the present method are in excellent agreement with those from the conventional boundary element method.  相似文献   

17.
The development of flow kinematics and fiber orientation distribution from the parabolic velocity profile and isotropic orientation at the channel inlet was computed in multi-disperse suspension flow through a parallel plate channel and their predictions were compared with those of mono- and bi-disperse suspensions. A statistical scheme (orientations of a large number of fibers are evaluated from the solution of the Jeffery equation along the streamlines) was confirmed to be very useful and feasible method to analyze accurately the orientation distribution of fibers in multi-disperse fiber suspension flow as well as mono- and bi-dispersions, instead of direct solutions of the orientation distribution function of fibers or the evolution equation of the orientation tensor which involves a closure equation. It was found that the flow kinematics and the fiber orientation depend completely on both the fiber aspect-ratio and the fiber parameter for multi-disperse suspension when the fiber–fiber and fiber-wall interactions are neglected. Furthermore, the addition of large aspect-ratio fibers as well as an increase in the fiber parameter related to the large aspect-ratio fibers could suppress the complex velocity field and stress distributions which are observed in suspensions containing small aspect-ratio fibers. From a practical point of view, therefore, the mechanical and physical properties of fiber composites should be improved with an increase in the volume fraction of large aspect-ratio fibers.  相似文献   

18.
The fundamental kinetic equation of gas theory, the Boltzniann equation, is a complex integrodiffcrential equation. The difficulties associated with its solution are the result not only of the large number of independent variables, seven in the general case, but also of the very complicated structure of the collision integral. However, for the mechanics of rarefied gases the primary interest lies not in the distribution function itself, which satisfies the Boltzmann equation, but rather in its first few moments, i.e., the averaged characteristics. This circumstance suggests the possibility of obtaining the averaged quantities by a simpler way than the direct method of direct solution of the Boltzmann equation with subsequent calculation of the integrals.It is well known that if a distribution function satisfies the Boltzmann equation, then its moments satisfy an infinite system of moment equations. Consequently, if we wish to obtain with satisfactory accuracy some number of first moments, then we must require that these moments satisfy the exact system of moment equations. However, this does not mean that to determine the moments of interest to us we must solve this system, particularly since the system of moment equations is not closed. The closure of the system by specifying the form of the distribution function (method of moments) can be considered only as a rough approximate method of solving problems. First, in this case it is not possible to satisfy all the equations and we must limit ourselves to certain of the equations; second, generally speaking, we do not know which equation the selected distribution function satisfies, and, consequently, we do not know to what degree it has the properties of the distribution function which satisfies the Boltzmann equation.A more reliable technique for solving the problems of rarefied gasdynamics is that based on the approximation of the Boltzmann equation, more precisely, the approximation of the collision integral. The idea of replacing the collision integral by a simpler expression is not new [1–4]. The kinetic equations obtained as a result of this replacement are usually termed model equations, since their derivation is usually based on physical arguments and not on the direct use of the properties of the Boltzmann collision integral. In this connection we do not know to what degree the solutions of the Boltzmann equation and the model equations are close, particularly since the latter do not yield the possibility of refining the solution. Exceptions are the kinetic model for the linearized Boltzmann equation [5] and the sequence of model equations of [6], constructed by a method which is to some degree analogous with that of [5].In the present paper we suggest for the simplification of the solution of rarefied gas mechanics problems a technique for constructing a sequence of approximate kinetic equations which is based on an approximation of the collision integral. For each approximate equation (i.e., equation with an approximate collision operator) the first few moment equations coincide with the exact moment equations. It is assumed that the accuracy of the approximate equation increases with increase of the number of exact moment equations. Concretely, the approximation for the collision integral consists of a suitable approximation of the reverse collision integral and the collision frequency. The reverse collision integral is represented in the form of the product of the collision frequency and a function which characterizes the molecular velocity distribution resulting from the collisions, where the latter is selected in the form of a locally Maxwellian function multiplied by a polynomial in terms of the components of the molecular proper velocities. The collision frequency is approximated by a suitable expression which depends on the problem conditions. For the majority of problems it may obviously be taken equal to the collision frequency calculated from the locally Maxwellian distribution function; if necessary the error resulting from the inexact calculation of the collision frequency may be reduced by iterations.To illustrate the method, we solve the simplest problem of rarefied gas theory-the problem on the relaxation of an initially homogeneous and isotropic distribution in an unbounded space to an equilibrium distribution.The author wishes to thank A. A. Nikol'skii for discussions of the study and V. A. Rykov for the numerical results presented for the exact solution.  相似文献   

19.
In this study the generally anisotropic and angularly inhomogeneous wedge, under power law tractions of order n of the radial coordinate r at its external faces is considered. At first, using variable separable relations in the equilibrium equations, the strain–stress relations and the strain compatibility equation, a differential system of equations is constructed and investigated. Decoupling this system, an ordinary differential equation is derived and the stress and displacement fields may be determined. The proposed procedure is also applied to the elastostatic problem of an isotropic and angularly inhomogeneous wedge. In the sequel William's asymptotic analysis in the case of angular inhomogeneity is examined. Finally, applications for the case of an angularly inhomogeneous wedge-shape dam and for the asymptotic procedure in an isotropic wedge with angularly varying shear modulus, are made.  相似文献   

20.
Obliquely propagating skew lumps are studied within the framework of the Kadomtsev–Petviashvili equation with a positive dispersion (the KP1 equation). Specific features of such lumps are analysed in detail. It is shown that skew multi-lump solutions can be also constructed within the framework of such an equation. As an example, the bi-lump solution is presented in the explicit form, analysed and illustrated graphically. The relevance of skew lumps to the real physical systems is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号