首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The energies of terms with spins S = 0, 1, 2 have been found using exact diagnoalization of the multielectron Hamiltonian of a multiband pd model for the CoO6 cluster. Co (e g orbital)-O hops, which form the covalent σ bond, are shown to decrease the energy of the state (IS) with an intermediate spin (S = 1) as compared to the energy of the state (LS) with a low spin (S = 0). An analogue of the Tanabe-Sugano diagram that takes into account the covalence of the CoO6 cluster is constructed. The state with S = 1 is shown to be a ground state at certain model parameters. An increase in temperature is established to decrease the crystal field and, thus, favors the transition of the ground state from LS to IS at T = 100 K and the transition of the IS ground state to a state (HS) with a high spin (S = 2) at T = 550 K. The magnetic susceptibility of LaCoO3 is calculated with allowance for the LS, IS, and HS states and for the fact that the HS state exhibits threefold orbital degeneracy of the t 2g shell, which results in an effective orbital moment L = 1 and the importance of spin-orbit interaction. The behavior of this magnetic susceptibility agrees well with the experimental x(T) dependence of LaCoO3.  相似文献   

2.
The anion deficient cobaltite La0.5Ba0.5CoO2.8 with theformal cobalt valence state close to 3+ has been studied as function of pressure up to6.5 GPa at different temperatures by neutron powder diffraction. At ambient pressure thecrystal structure of this compound has cubic symmetry (space group Pm3?m) and is found to become antiferromagnetic withT N close to 250 K. Applied pressure inducesa gradual transition from the antiferromagnetic into a ferromagnetic state through a mixedmagnetic state. The transition is not accompanied by obvious changes in the macroscopiccrystal symmetry. It is suggested that the magnetic ground state strongly depends on theunit cell volume and that the transition is associated with a spin state crossover of thecobalt ions whereas the formal Co3+/Co4+ ratio is less importantthan expected following the double exchange scenario for the appearance offerromagnetism.  相似文献   

3.
The transition of Fe3+ ions from the high-spin (HS) state (S = 5/2) to the low-spin (LS) state (S = 1/2) has been observed in the BiFeO3 multiferroic crystal at high pressures in the range 45–55 GPa. This effect has been studied in high-pressure diamond-anvil cells by means of two experimental methods using synchrotron radiation: nuclear resonant forward scattering (NFS or synchrotron Mössbauer spectroscopy) and FeK β high-resolution X-ray emission spectroscopy (XES). The HS-LS transition correlates with anomalies in the magnetic, optical, transport, and structural properties of the crystal. At room temperature, the transition is not stepwise, but is extended in a pressure range of about 10 GPa due to thermal fluctuations between the high-spin and low-spin states. It has been found that the transition of the BiFeO3 insulator to the metal occurs only in the low-spin phase and the cause of all phase transitions is the HS-LS crossover.  相似文献   

4.
The HS → LS spin crossover effect (high-spin → low-spin transition) induced by high pressure in the range 45–53 GPa is observed in trivalent Fe3+ ions in the paramagnetic phase of a Gd57Fe3(BO3)4 gadolinium iron borate crystal. This effect is studied in high-pressure diamond-anvil cells by two experimental methods using synchrotron radiation: nuclear resonant forward scattering (NFS) and Fe K β high-resolution x-ray emission spectroscopy (XES). The manifestation of the crossover in the paramagnetic phase, which has no order parameter to distinguish between the HS and LS states, correlates with the optical-gap jump and with the insulator-semiconductor transition in the crystal. Based on a theoretical many-electron model, an explanation of this effect at high pressures is proposed.  相似文献   

5.
The local magnetic and valence states of impurity iron ions in the rhombohedral La0.75Sr0.25Co0.98 57Fe0.02O3 perovskite were studied using Mössbauer spectroscopy in the temperature range 87–293 K. The Mössbauer spectra are described by a single doublet at 215–293 K. The spectra contained a paramagnetic and a ferromagnetic component at 180–212 K and only a broad ferromagnetic sextet at T < 180 K. The results of the studies showed that, over the temperature range 87–295 K, the iron ions are in a single (tetrahedral) state with a valence of +3. In the temperature range 180–212 K, two magnetic states of Fe3+ ions were observed, one of which is in magnetically ordered microregions and the other, in paramagnetic microregions; these states are due to atomic heterogeneity. In the magnetically ordered microregions in the temperature range 87–212 K, the magnetic state of the iron ions is described well by a single state with an average spin S = 1.4 ± 0.2 and a magnetic moment μ(Fe) = 2.6 ± 0.4μ B .  相似文献   

6.
The magnetic properties of Li x CoO2 for x = 0.94, 0.75, 0.66, and 0.51 are investigated within the method combining the generalized gradient approximation with dynamical mean field theory (GGA + DMFT). A delicate interplay between Hund’s exchange energy and t 2g ?e g crystal field splitting is found to be responsible for the high-spin to low-spin state transition for Co4+ ions. The GGA + DMFT calculations show that the Co4+ ions at a small doping level adopt the high-spin state, while delithiation leads to an increase in the crystal field splitting and low-spin state becomes preferable. The Co3+ ions are found to stay in the low-spin configuration for any x values.  相似文献   

7.
Ab initio quantum-chemical cluster calculations are performed for the perovskite LaCoO3. The main concern is to calculate the energy level ordering of different spin states of Co3+, which is an issue of great controversy for many years. The calculations performed for the trigonal lattice structure at T = 5 K and 300 K, with the structural data taken from experiment, display that the low-spin (LS, S = 0) ground state is separated from the first excited high-spin (HS, S = 2) state by a gap <100 meV, while the intermediate-spin (IS, S = 1) state is located at much higher energy ≈0.5 eV. We suggest that the local lattice relaxation around the Co3+ ion excited to the HS state and the spin-orbit coupling reduce the spin gap to a value ~10 meV. Coupling of the IS state to the Jahn-Teller local lattice distortion is found to be rather strong and reduces its energy position to a value of 200 ?\div 300 meV. Details of the quantum-chemical cluster calculation procedure and the obtained results are extensively discussed and compared with those reported earlier by other authors.  相似文献   

8.
A magnetic resonance method is applied to the investigation of a number of isostructural diamagnetic compounds ABO3 (A = Sc, Lu, In) with small additions of Cr3+ ions (S = 3/2) sufficient to observe single-ion spectra. It is shown that the resonance spectra for isolated Cr3+ ions can be described to a good accuracy by the ordinary axial spin Hamiltonian for 3d ions in octahedral oxygen environment. The parameters of the spin Hamiltonian are determined. It is established that Cr3+ ions in these crystals are characterized by easy-axis-type anisotropy.  相似文献   

9.
Single crystals of double sodium-containing lanthanum and gadolinium molybdates doped with Tm3+ ions were synthesized by the Czochralski method. The spectroscopic properties of these crystals were investigated from the viewpoint of their use as active media in diode-pumped lasers. The polarized spectra of absorption on the 3 H 4 and 3 F 4 levels and the polarized spectra of luminescence due to the 3 F 4-3 H 6 laser transition were recorded, and the lifetimes of the 3 H 4 and 3 F 4 excited states of the Tm3+ ions were determined. The luminescence cross sections were calculated using the Füchtbauer-Ladenburg formula. The simulation of the decay curve of the 3 H 4 excited state according to the Golubov-Konobeev-Sakun method revealed that, in the crystals under investigation, the interaction between Tm3+ ions predominantly occurs through the dipole-dipole mechanism.  相似文献   

10.
The magnetic properties of the EuMn0.5Co0.5O3 perovskite synthesized under various conditions are studied in fields up to 140 kOe. The sample synthesized at T = 1500°C is shown to exhibit a metamagnetic phase transition, which is irreversible below T = 40 K, and the sample synthesized at T = 1200°C demonstrates the field dependence of magnetization that is typical of a ferromagnet. Both samples have TC = 123 K and approximately the same magnetization in high magnetic fields. The metamagnetism is assumed to be related to a transition from a noncollinear ferromagnetic phase to a collinear phase, and the presence of clusters with ordered Co2+ and Mn4+ ions leads to ferromagnetism. The noncollinear phase is formed due to the competition between positive Co2+–Mn4+ and negative Mn4+–Mn4+ and Co2+–Co2+ interactions, which make almost the same contributions, and to the existence of a high magnetic anisotropy.  相似文献   

11.
Spin transitions of cobalt ions in LaCoO3 single crystals have been studied by the method of X-ray magnetic circular dichroism (XMCD) at the K- and L2,3-edges of Co3+ ions. The orbital momentum of cobalt ions obtained for the K-edge at the 3d level in the region of the spin transition in the temperature range from 25 to 120 K increases by a factor of approximately 1.6, whereas the slope of the magnetization curve value in the same temperature range and magnetic field increases by a factor of more than 10. XMCD experiments at the cobalt L2,3-edges demonstrate gradual growth of the ratio of the orbital momentum to the spin one L/S from 0.48 to 0.53 in the temperature range from 60 K to 120 K.  相似文献   

12.
The first results of the study of optical absorption spectra of KTaO3: Er3+ crystals are presented. In the 350–660-nm region, lines are observed deriving from intraconfigurational electronic transitions from the 4 I 15/2 ground state to levels of the 4 F 9/2, 4 S 3/2, 2 H 11/2, 4 F 7/2, 4 F 5/2(4 F 3/2), 2 G 9/2, and 4 G 11/2 excited states of the Er3+ ions. A comprehensive study of transitions to the 4 F 9/2, 4 S 3/2, 2 H 11/2, and 4 F 7/2 levels at 77 K is carried out. The number of lines observed for the above transitions fits the theoretically possible number for ?-? electronic transitions in Er3+ ions in the cubic crystal field. In the case of a differently charged substituted ion, this situation occurs only under nonlocal impurity charge compensation. The energies of the excited state levels for the transitions under study are determined.  相似文献   

13.
A powder X-ray diffraction study, combined with magnetic susceptibility and electric transport measurements, was performed on a series of LnCoO3 perovskites (Ln = Y, Dy, Gd, Sm, Nd, Pr and La) over a temperature range 100–1000 K. A non-standard temperature dependence of the observed thermal expansion was modelled as a sum of three contributions: (1) weighted sum of lattice expansions of the cobaltite in the diamagnetic low spin state and in the intermediate (IS) or high (HS) spin state. (2) An anomalous expansion due to the increasing population of excited (IS or HS) states of Co3+ ions over the course of the diamagnetic-paramagnetic transition. (3) An anomalous expansion due to excitations of Co3+ ions to another paramagnetic state accompanied by an insulator-metal transition. The anomalous expansion is governed by parameters that are found to vary linearly with the Ln ionic radius. In the case of the first magnetic transition it is the energy splitting E between the ground low spin state and the excited state, presumably the intermediate spin state. The energy splitting E, determined by a fit to magnetic susceptibility, decreases with temperature. The values of E determined for LaCoO3 and YCoO3 at T=0 K are 164 K and 2875 K respectively, which fall to zero at T=230 K for LaCoO3 and 860 K for YCoO3. The second anomalous expansion connected with a simultaneous magnetic and insulator-metal transition is characterized by its center at T=535 K for LaCoO3 and 800 K for YCoO3. The change of the unit cell volume during each transition is independent of the Ln cation and is about 1% in both cases.  相似文献   

14.
High-frequency broad-band (65–240 GHz) EPR is used to study impurity centers of bivalent chromium in a CdGa2S4 crystal. It is found that the EPR spectra correspond to tetragonal symmetry. The spin Hamiltonian H = βB · g · S + B 2 0 O 2 0 + B 4 0 O 4 0 + B 4 4 O 4 4 with the parameters B 2 0 =23659±2 MHz, B 4 0 =1.9±1 MHz, |B 4 4 |=54.2±2 MHz, g=1.93±0.02, and g=1.99±0.02 is used to describe the observed spectra. It is concluded that chromium ions occupy one of the tetrahedrally coordinated cation positions.  相似文献   

15.
The results of studies of the absorption spectra of nickel orthoborate Ni3(BO3)2 in the range of electronic dd-transitions are reported. The obtained data are analyzed in the framework of the crystal field theory. The Ni2+ ions are located in two crystallographically nonequivalent positions 2a and 4f with point symmetry groups C2h and C2, respectively, surrounded by six oxygen ions forming deformed octahedra. The absorption spectra exhibit three intense bands corresponding to spin-resolved transitions from the ground state of nickel ion 3A2g (3F) to the sublevels of the 3T2g (3F), 3T1g (3F) and 3T1g (3P) triplets split by the spinorbit interaction and the rhombic component of the crystal field. At temperatures below 100 K, the spectra exhibit a thin structure, in which phonon-free lines can be distinguished. Comparison of the calculated frequencies of the zero-phonon transitions with the experimental data allows estimating parameters of the crystal field acting on the nickel ions in the 2a- and 4f-positions, as well as the parameters of electrostatic interaction between the 3d electrons and spin-orbit interaction constants.  相似文献   

16.
The magnetic properties of the α-Fe2O3 hematite at a high hydrostatic pressure have been studied by synchrotron Mössbauer spectroscopy (nuclear forward scattering (NFS)) on iron nuclei. Time-domain NFS spectra of hematite have been measured in a diamond anvil cell in the pressure range of 0–72 GPa and the temperature range of 36–300 K in order to study the magnetic properties at a phase transition near a critical pressure of ~50 GPa. In addition, Raman spectra at room temperature have been studied in the pressure range of 0–77 GPa. Neon has been used as a pressure-transmitting medium. The appearance of an intermediate electronic state has been revealed at a pressure of ~48 GPa. This state is probably related to the spin crossover in Fe3+ ions at their transition from the high-spin state (HS, S = 5/2) to a low-spin one (LS, S = 1/2). It has been found that the transient pressure range of the HS–LS crossover is extended from 48 to 55 GPa and is almost independent of the temperature. This surprising result differs fundamentally from other cases of the spin crossover in Fe3+ ions observed in other crystals based on iron oxides. The transition region of spin crossover appears because of thermal fluctuations between HS and LS states in the critical pressure range and is significantly narrowed at cooling because of the suppression of thermal excitations. The magnetic PT phase diagram of α-Fe2O3 at high pressures and low temperatures in the spin crossover region has been constructed according to the results of measurements.  相似文献   

17.
The electron spin resonance has been measured for the first time both in the paramagnetic phase of the metallic GdB6 antiferromagnet (TN = 15.5K) and in the antiferromagnetic state (T < TN). In the paramagnetic phase below T* ~ 70 K, the material is found to exhibit a pronounced increase in the resonance linewidth and a shift in the g-factor, which is proportional to the linewidth Δg(T) ~ ΔH(T). Such behavior is not characteristic of antiferromagnetic metals and seems to be due to the effects related to displacements of Gd3+ ions from the centrosymmetric positions in the boron cage. The transition to the antiferromagnetic phase is accompanied by an abrupt change in the position of resonance (from μ0H0 ≈ 1.9 T to μ0H0 ≈ 3.9 T at ν = 60 GHz), after which a smooth evolution of the spectrum occurs, resulting eventually in the formation of the spectrum consisting of four resonance lines. The magnetic field dependence of the frequency of the resonant modes ω0(H0) obtained in the range of 28–69 GHz is well interpreted within the model of ESR in an antiferromagnet with the easy anisotropy axis ω/γ = (H 0 2 +2HAHE)1/2, where HE is the exchange field and HA is the anisotropy field. This provides an estimate for the anisotropy field, HA ≈ 800 Oe. This value can result from the dipole?dipole interaction related to the mutual displacement of Gd3+ ions, which occurs at the antiferromagnetic transition.  相似文献   

18.
The optical orientation of the angular momenta of alkali atoms in the presence of a buffer gas (molecular nitrogen) has been studied experimentally. It has been shown that, even at a low concentration of molecular nitrogen in the cell, the excitation of 133Cs atoms from the lower hyperfine level with F = 3, which belongs to the ground 2S1/2 state, results in a larger amplitude of the magnetic resonance than the excitation from the hyperfine level with F = 4. This result has been theoretically explained under the assumption that the spin state of the alkali atomic nucleus does not change at collision with a nitrogen molecule, which is accompanied by a nonradiative transition of the alkali atom from the excited 2P1/2 state to the ground 2S1/2 state.  相似文献   

19.
The neodymium ferroborate NdFe3(BO3)4 undergoes an antiferromagnetic transition at T N = 30 K, which manifests itself as a λ-type anomaly in the temperature dependence of the specific heat C and as inflection points in the temperature dependences of the magnetic susceptibility χ measured at various directions of an applied magnetic field with respect to the crystallographic axes of the sample. Magnetic ordering occurs only in the subsystem of Fe3+ ions, whereas the subsystem of Nd3+ ions remains polarized by the magnetic field of the iron subsystem. A change in the population of the levels of the ground Kramers doublet of neodymium ions manifests itself as Schottky-type anomalies in the C(T) and χ(T) dependences at low temperatures. At low temperatures, the magnetic properties of single-crystal NdFe3(BO3)4 are substantially anisotropic, which is determined by the anisotropic contribution of the rare-earth subsystem to the magnetization. The experimental data obtained are used to propose a model for the magnetic structure of NdFe3(BO3)4.  相似文献   

20.
Thermal quenching of interconfigurational 5d-4f luminescence of Er3+ and Tm3+ ions in BaY2F8 crystals is studied in the temperature range of 330–790 K. The quenching temperatures are ~575 and ~550 K for Er3+ and Tm3+, respectively. It is shown that quenching of 5d-4f luminescence of Tm3+ ions is caused by thermally stimulated ionization of 5d electrons to the conduction band.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号