首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hyperpolarized 13C magnetic resonance spectroscopy in pig models enables metabolic activity mapping, providing a powerful tool for the study of the heart physiology, but requires the development of dedicated radiofrequency coils, capable of providing large field of view with high signal-to-noise ratio (SNR) data. This work describes the simulations and the tests of a transmit-only (TX) volume coil/receive-only (RX) surface coil both designed for hyperpolarized studies of pig heart with a clinical 3T scanner. The coil characterization is performed by developing an SNR model for coil performance in terms of coil resistance, sample-induced resistance and magnetic field pattern. In particular, coil resistances were calculated from Ohm’s law, while magnetic field patterns and sample-induced resistances were calculated using a numerical finite-difference time-domain algorithm. Experimental phantom chemical shift image, showed good agreement with the theoretical SNR-vs-depth profiles and highlighted the advantage of the novel configuration over the single transmit–receive coils throughout the volume of interest for cardiac imaging in pig. Finally, the TX-birdcage/RX-circular configuration was tested by acquiring metabolic maps with hyperpolarized [1-13C] pyruvate injected i.v. in a pig. The results of the phantom and pig experiments show the ability of the coil configuration to image well the metabolites distribution.  相似文献   

2.
Cardiac metabolism assessment with hyperpolarized 13C magnetic resonance spectroscopy in pig models requires the design of dedicated coils capable of providing large field of view with high signal-to-noise ratio (SNR) data. This work presents a comparison between a commercial 13C quadrature birdcage coil and a homebuilt 13C circular coil both designed for hyperpolarized studies of pig heart with a clinical 3T scanner. In particular, the simulation of the two coils is described by developing an SNR model for coil performance prediction and comparison. While coil resistances were calculated from Ohm’s law, the magnetic field patterns and sample-induced resistances were calculated using a numerical finite-difference time-domain algorithm. After the numerical simulation of both coils, the results are presented as SNR-versus-depth profiles using experimental SNR extracted from the [1-13C]acetate phantom chemical shift image and with a comparison of metabolic maps acquired by hyperpolarized [1-13C]pyruvate injected in a pig. The accuracy of the developed SNR models was demonstrated by good agreement between the theoretical and experimental coil SNR-versus-depth profiles.  相似文献   

3.
The purpose of this study was to assess the benefits of a 3 T scanner and an eight-channel phased-array head coil for acquiring three-dimensional PRESS (Point REsolved Spectral Selection) proton (H-1) magnetic resonance spectroscopic imaging (MRSI) data from the brains of volunteers and patients with brain tumors relative to previous studies that used a 1.5 T scanner and a quadrature head coil. Issues that were of concern included differences in chemical shift artifacts, line broadening due to increased susceptibility at higher field strengths, changes in relaxation times and the increased complexity of the postprocessing software due to the need for combining signals from the multichannel data. Simulated and phantom spectra showed that very selective suppression pulses with a thickness of 40 mm and an overpress factor of at least 1.2 are needed to reduce chemical shift artifact and lipid contamination at higher field strengths. Spectral data from a phantom and those from six volunteers demonstrated that the signal-to-noise ratio (SNR) in the eight-channel coil was more than 50% higher than that in the quadrature head coil. For healthy volunteers and eight patients with brain tumors, the SNR at 3 T with the eight-channel coil was on average 1.5 times higher relative to the eight-channel coil at 1.5 T in voxels from normal-appearing brains. In combination with the effect of a higher field strength, the use of the eight-channel coil was able to provide an increase in the SNR of more than 2.33 times the corresponding acquisition at 1.5 T with a quadrature head coil. This is expected to be critical for clinical applications of MRSI in patients with brain tumors because it can be used to either decrease acquisition time or improve spatial resolution.  相似文献   

4.
基于小型射频线圈的核磁共振检测探头在波谱分析和成像研究中具有广泛的应用,如化学位移波谱分析、磁共振成像和勘探测井等技术领域。但是,由于外加静磁场作用下,自旋体系发生塞曼能级分裂后,高低能态之间的核自旋数量之差很小,普遍存在检测信噪比很低的问题,而且初级磁共振接收信号的质量受所用探头线圈电气参数的影响较大。研究结果表明,在特定的被测样品和接收线圈占空比以及静磁场等条件不变的情况下,检测信噪比与单位电流产生的射频磁场成正比,而与线圈高频电阻的平方根成反比。在永磁0.39Tesla主磁场条件下,研究了趋肤效应影响下小型螺线管线圈几何参数的优化设计方法。理论仿真和实际的测量结果表明,几何参数为线径0.5 mm、直径5.5 mm的10匝微螺线管线圈,在16.9 MHz谐振频率上,相对信噪比取得一个极大值点,对应的Q值约为199.8,与阻抗分析仪测得结果有较好的吻合,验证了该核磁共振检测线圈设计新方法是合理的。本文提出的基于线圈电磁特性的高信噪比检测探头设计方法,可推广到目前的质子密度成像、岩心弛豫谱分析等应用中。  相似文献   

5.
The use of multi-channel coils can efficiently increase the signal-to-noise ratio (SNR) of magnetic resonance spectroscopy data if the signals from multiple channels are optimally combined. Combining multi-channel signals requires proper alignment of the phases of the signals from each of the elements of the coil and then accurately weighting the summation of those signals. We present a procedure for acquiring proton magnetic resonance spectroscopic imaging (MRSI) data using an eight-channel coil without water suppression and a rapid and robust method that uses unsuppressed water signal as a reference both for aligning the phases and for weighting the summation of signals that originate in the multiple coil elements. We use both computer simulation and in vivo proton MRSI data to demonstrate the advantages of our method for optimizing the SNR of the combined signal compared with the SNRs of signals that were acquired either using a standard volume head coil or using an eight-channel coil with a metabolite signal as the reference for combination.  相似文献   

6.
Transfer functions determined from the component values of an equivalent circuit are used to calculate the relative signal-to-noise ratio of rf coils for magnetic resonance imaging. Experimental verification of the method is obtained by directly measuring signals from three solenoidal coils and by measuring the signal-to-noise ratio of these solenoids. The transfer functions separate the total noise voltage into contributions from the coil resistance and contributions from magnetic and electric field interactions with the sample. The use of this technique in understanding and improving coil design is discussed.  相似文献   

7.
In this paper we present the spatial resolution enhancement and noise reduction level achieved with an optimized inductively coupled surface coil specifically designed for our experiments. The technique of designing and implementing customized coils for magnetic resonance imaging of very small structures is described. We have designed a low cost prototype of an inductively coupled circular surface coil, tuned for 1H magnetic resonance imaging at 200 MHz. The coil is mounted on a customized teflon support. The inductive coupling used in this coil improves the signal-to-noise ratio by reducing various loss mechanisms (specially the dielectric losses). Test images have been acquired to determine the evolution of induced articular lesions in a rabbit animal model, as well as brain tumors in rats. The images show high spatial resolution, excellent B1 field homogeneity and no “hot spots”. Comparing these images with those acquired with conventional coils, one finds better spatial resolution and signal-to-noise ratio, as well as larger field of view with less intense illumination artifact. The methodology can be used in any application that requires high quality imaging of small structures.  相似文献   

8.
The goal of this study was to develop and evaluate high-resolution magnetic resonance spectroscopic imaging (MRSI) utilizing the gains in signal-to-noise ratio (SNR) provided by combining higher magnetic field with high-sensitivity phased-array (PA) coils. We investigated the maximum improvement in spatial resolution as small as 0.09 cm(3) for brain MRSI while maintaining adequate SNR and acquisition time. The use of low peak power, dual-band spectral-spatial pulses was also investigated for application to 3 T MRSI of the brain using the body coil for radiofrequency excitation and PA coils for signal reception.  相似文献   

9.
An inductively coupled surface coil for imaging the rat spine at 7 T is described. This planar circular probe was made from microwave substrate to limit the size of the coil and to minimize the magnetic susceptibility. The surface coil was used as a single transmit/receive coil and as a receive-only coil with a birdcage body coil for excitation. The signal-to-noise ratio (SNR) of the probe was compared to a 5-cm birdcage coil and exceeded the birdcage coil's SNR by three to six times at superficial structures. The main advantages of the probe are an improved SNR for superficial structures and a simple design and use. Images with 50 × 50 × 500 μm voxels were obtained of the rat spine with excellent anatomical detail.  相似文献   

10.
Thoracic and abdominal magnetic resonance imaging studies generally require some type of compensation for respiratory and cardiac motions in order to yield artifact-free images with good signal-to-noise ratio. Most techniques for respiratory compensation require the use of a non-NMR sensing device to monitor the subject's chest motion, while cardiac motion compensation generally requires the use of ECG leads within the magnet. An inductive pickup coil placed on the subject's chest is perhaps the simplest and least expensive means of monitoring respiration in a MR scanner. However, due to inductive coupling between the pickup coil, radio frequency resonator and gradient set, this arrangement often results in both NMR and respiratory signal artifacts and can also present a burn hazard to the subject depending on the placement and orientation of the pickup coil. Moreover, the presence of a pickup coil on the chest can degrade local magnetic field homogeneity and thus degrade image quality. Similar problems arise when ECG leads must be connected to the subject for cardiac monitoring and gating. To preserve the benefits of the simple pickup coil while circumventing these limitations, a "lever-coil" sensor is presented in which a pickup coil is mechanically coupled to the subject but is not located within the resonator or gradient coil. This results in much lower mutual inductance between the pickup coil and the resonator or gradients. The optimization of the geometry of the apparatus is discussed and lever-coil signal traces are shown which demonstrate the sensor's ability to simultaneously detect both respiratory and cardiac motion in mice. Finally, respiratory-gated and cardiac-triggered spin echo images of the rat abdomen and mouse heart are presented to demonstrate the utility of the lever-coil sensor.  相似文献   

11.
介绍了用于23Na磁共振成像实验的收发一体表面线圈的设计、制作原理与实际制作. 用制作的23Na表面线圈在Bruker Biospec 47/30磁共振成像仪上采集了不同浓度NaCl溶液,盐腌制鹌鹑蛋和大鼠头部的23Na密度像,为深入开展23Na磁共振成像的生物医学应用研究奠定基础.  相似文献   

12.
The study of focal pathology by single-voxel magnetic resonance spectroscopy (MRS) is hampered by the impossibility to study tissue heterogeneity or compare the metabolite signals in breast lesion directly to those in unaffected tissue. Multivoxel MRS studies, while potentially allowing for truly quantitative tissue characterization, have up to now also been far from quantitative with, for example, the signal-to-noise ratio of the choline (Cho) signal serving as measure of tumor activity. Shown in this study is that in a standard clinical setting with a regular 1.5-T magnetic resonance scanner, it is possible to perform quantitative multivoxel MRS. With the use of literature values for the T1 and T2 relaxation times of Cho and water in fibroglandular breast tissue and tumors, one can determine the concentrations of Cho in different tumor compartments and surrounding tissues in two brief multivoxel MRS measurements. This opens excellent perspectives to quantitative diagnostic and follow-up studies of focal pathology such as lesions suspected of breast cancer.  相似文献   

13.
This study was to validate the feasibility of using a magnetic resonance imaging-guidewire (MRIG) for intravascular 3.0 T MR imaging of deep-seated arterial walls of large animals. The functionality of a 0.032-in. MRIG was evaluated and the signal-to-noise ratio (SNR) was calculated. Then, MRI of ten iliofemoral arteries of six pigs was acquired by MRIG and surface coil. The difference in the SNRs of the arterial walls between different coils was compared. Histology examined the potential thermal injuries of the imaged vessels. The MRIG functioned with the 3.0 T MR scanner. The average SNR of the arterial walls was significantly higher with the MRIG than with the surface coils (76.22 ± 34.76 vs. 12.63 ± 4.25, P < 0.01). Histology showed no evidence of thermal injuries at the vessel walls. This study validated the feasibility of generating intravascular 3.0 T MRI of deep-seated arterial walls in large animals, which should facilitate the translation of this technique from 1.5 to 3.0 T MR scanner.  相似文献   

14.
The increased magnetization and frequency separation at high magnetic field strength, such as 7 T, can provide spectra of high signal-to-noise ratio and spectral resolution. However, most human brain magnetic resonance spectroscopy (MRS) studies at 7 T have employed surface coils and thus limited to superficial brain structures. In this study, volume coil excitation together with volume array reception has been utilized to access deeper brain areas. RF power limitations have been addressed by the use of VERSE-modified pulses, and spectra in parietal and pregenual anterior cingulate cortex (pgACC) have been acquired in eight subjects using STEAM with a short echo time of 20 ms. Spectra were analyzed using LC-model. Therefore, an experimental basis set of in vitro spectra was established from 20 human brain metabolite solutions. An exemplary comparison with an optimized PRESS-based single voxel MRS method at 3 T has been performed. Despite the intrinsically lower signal in STEAM, the 7 T spectra show 1.87 times higher signal-to-noise ratio than at 3 T (using PRESS) and more metabolites could be quantified reliably. The results show that the proposed method can be employed at 7 T in deep brain structures and allows the absolute and relative concentrations of human brain metabolites to be determined with low error levels.  相似文献   

15.
We consider the commonly used "Sum-of-Squares" (SoS) reconstruction method for phased-array magnetic resonance imaging with unknown coil sensitivities. We show that the signal-to-noise ratio (SNR) in the image produced by SoS is asymptotically (as the input SNR--> infinity ) equal to that of maximum-ratio combining, which is the best unbiased reconstruction method when the coil sensitivities are known. Finally, we discuss the implications of this result.  相似文献   

16.
We determined the reproducibility of GABA (gamma-aminobutyric acid) measurements using 2D J-resolved magnetic resonance spectroscopy (MRS) on a clinical 1.5-T MR imaging scanner. Two-dimensional J-resolved spectra were acquired in vitro across five GABA concentrations using a volume head coil and a 5-in. surface coil. Additional spectra using a sixth GABA phantom with a very low concentration and from a healthy volunteer were recorded in the 5-in. surface coil only. In each case, the 3.01-ppm GABA resonance was quantified; for comparison, the peak integrals of choline (3.2 ppm) and creatine (3.03 ppm) were recorded. At a physiological concentration (1.2 mM), in vitro GABA measurement was significantly more reproducible in the surface coil than in the volume coil (P=.005), with coefficients of variation (CVs) being less than 16% with the surface coil and up to 68% with the volume head coil. At the smallest concentration of in vivo GABA reported using other spectroscopy techniques (0.8 mM) and detected only using the surface coil, the CV for GABA was 23% and was less than 10% for choline and creatine, which compare favorably with results from published studies. In vivo, the CV for GABA measurement was 26%, suggesting that 2D J-resolved MRS would be suitable for detecting physiological changes in GABA, similar to those reported using other methods.  相似文献   

17.
Proper design of a birdcage coil plays a very important role in obtaining high-resolution small animal magnetic resonance imaging. The RF field homogeneity and the coil filling factor directly affect the signal-to-noise ratio (S/N) and therefore limit the resolution. It has been shown that a conductive end-cap placed on one side of the coil can improve the RF field inhomogeneity near this area. This also contributes to an increase in the S/N by reducing the length of the RF coil. While this is true near the end-cap, the distal half of the coil still suffers from poor homogeneity and S/N. Consequently, such a shortfall may hinder small animal whole body imaging. In order to improve the coil performance for a larger imaging volume, we designed a new small animal birdcage RF coil by adding a detachable second end-cap to the open end. The performance of single end and double end RF coils was compared experimentally. The results indicate that the double end-cap can provide superior uniformity along the long axis of the coil. Furthermore, if one wishes to obtain the same homogeneity within a given volume, a double end-cap would have less than half of the length of the single end-cap coil leading to a superior S/N performance.  相似文献   

18.
Magnetic resonance imaging (MRI) using high static field (>3T) generates high-quality images, thanks to high homogeneity in transmission as well as high signal-to-noise ratio (SNR) in reception. On the other hand, biological effects are proportional to the magnetic field strength and moreover the diagnostic accuracy is not always linked to high-quality imaging. For these reasons, the interest in low-field imaging becomes greater, also because of cheaper setting, greater patients comfort and more safety profile. In simple cases, as for surface coil, the coil performance is evaluated using classical electromagnetic theory, but for more complex geometry and in presence of a sample, is more difficult to evaluate the solution and often is necessary to follow a trial-and-error approach. Numerical methods represent a solution to this problem. In this work, we performed numerical simulation on a two-channel knee coil for low-field (0.5 T) MRI scanner. We are interested in seeing the effect of a sample placed inside the coil on the sample-induced resistance and decoupling between channels. In particular, we observe how the position of the sample inside the channel influences the resistance value and for performing this we compared an innovative method based on the exponential fitting on voltage oscillation damping with a validated method (estimation using quality factor). Finally, for the complete coil, the scatter parameters were calculated in loaded and unloaded conditions.  相似文献   

19.
The purpose of this study was to analyse the relationship between the radio frequency (RF) coil performance and conductor surface shape for ultra-high field (UHF) magnetic resonance imaging. Twelve different leg-shaped quadrature birdcage coils were modeled and built, e.g., 4 mm-width-leg conventional birdcage coil, 7 mm-width-leg conventional birdcage, 10 mm-width-leg conventional birdcage coil, 13 mm-width-leg conventional birdcage coil, inside arc-shape-leg birdcage coil, outward arc-shape-leg birdcage coil, inside right angle-shape-leg birdcage coil, outward right angle-shape-leg birdcage coil, vertical 4 mm-width-leg vertical birdcage, 6 mm-width-leg vertical birdcage, 8 mm-width-leg vertical birdcage and 10 mm-width-leg vertical birdcage. Studies were carried out in both electromagnetic simulations with finite element method as well as in vitro saline phantom experiments at 9.4 T. Both the results of simulation and experiment showed that conventional birdcage coil produces the highest signal-to-noise ratio (SNR) while the vertical birdcage coil produces the most homogeneous RF magnetic (B 1) field at UHF. For conventional birdcage coils, as well as the vertical birdcage coils, only the proper width of legs results in the best performance (e.g., B 1 homogeneous and SNR). For vertical birdcage coils, the wider the leg size, the higher RF magnetic (B 1) field intensity distribution.  相似文献   

20.
The signal-to-noise ratio (SNR) performance and practicality issues of a four-element phased-array coil and an implantable coil system were compared for rat spinal cord magnetic resonance imaging (MRI) at 7 T. MRI scans of the rat spinal cord at T10 were acquired from eight rats over a 3 week period using both coil systems, with and without laminectomy. The results demonstrate that both the phased array and the implantable coil systems are feasible options for rat spinal cord imaging at 7 T, with both systems providing adequate SNR for 100-mum spatial resolution at reasonable imaging times. The implantable coils provided significantly higher SNR, as compared to the phased array (average SNR gain of 5.3x between the laminectomy groups and 2.5x between the nonlaminectomy groups). The implantable coil system should be used if maximal SNR is critical, whereas the phased array is a good choice for its ease of use and lesser invasiveness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号