首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The superconducting transition temperature T c of a “clean ferromagnet-dirty superconductor” bilayer is calculated using boundary conditions derived for the quasiclassical Green’s function. This combination corresponds to the majority of experiments, in which Fe, Ni, Co, or Gd are used as a material for the ferromagnetic layer. It is shown that T c oscillates upon changing thickness of the ferromagnetic layer, in accordance with the experimental observations.  相似文献   

2.
The proximity effect was studied in a thin-film Fe-Cr-V-Cr-Fe layered system. As the chromium layer thickness (dCr) increases at a fixed thickness of iron layers (dFe), the dependence of the superconducting transition temperature (Tc) on dCr exhibits a maximum at dCr ? 40 Å followed by a sharp decrease. Investigation of the dependence of Tc on dFe at a fixed dCr showed that the depth of penetration of the Cooper pairs into a chromium layer does not exceed 40 Å. Analysis of the results obtained suggests that, at dCr ? 40 Å, chromium layers exhibit the transition from a nonmagnetic state to an incommensurate spin density wave state.  相似文献   

3.
Features of a phase transition between 0 and π states in superconductor/ferromagnet/superconductor (SFS) Josephson structures with thin superconducting layers and a ferromagnetic barrier are studied experimentally and theoretically. The dependence of the critical temperature Tc of a transition of the hybrid structure to a superconducting state on the thickness of superconducting layers ds is analyzed by a local method involving measurements of the nonlinear microwave response of the system by a near-field probe. An anomalous increase in the measured temperature Tc at the reduction of the thickness ds is detected and is attributed to the 0-π transition.  相似文献   

4.
We studied the commensurate semifluxon oscillations of Josephson flux-flow in Bi-2212 stacked structures near Tc as a probe of melting of a Josephson vortex lattice. We found that oscillations exist above 0.5 T. The amplitude of the oscillations is found to decrease gradually with the temperature and to turn to zero without any jump at T = T0 (3.5 K below the resistive transition temperature Tc), thus, indicating a phase transition of the second order. This characteristic temperature T0 is identified as the Berezinskii-Kosterlitz-Thouless (BKT) transition temperature, TBKT, in the elementary superconducting layers of Bi-2212 at zero magnetic field. On the basis of these facts, we infer that melting of a triangular Josephson vortex lattice occurs via the BKT phase with formation of characteristic flux loops containing pancake vortices and antivortices. The B-T phase diagram of the BKT phase found from our experiment is consistent with theoretical predictions.  相似文献   

5.
The influence of small additions of 3d-metals (Cr, Fe, Co) on the superconducting transition temperature of lead has been studied. Both components are condensed simultaneously on a quartz substrate, held at 10 °K. With this “Quench evaporation technique” we get a statistical distribution of the impurity atoms in the lead matrix. As in early experiments on In and Sn the superconducting transition temperature of Pb decreases linearly with increasing 3d-metal content. This is in agreement with the theoretical results ofAbrikosov-Gorkov andSkalski et al. For the first time an influence of 3d-metal oxides (Cr-, Mn- and Co-oxide) on the superconductivity of Pb has been found. The transition temperatureT c decreases linearly with increasing oxide content (c) as in the case of the pure metals. For Mn and Co the slopesdT c /dc are nearly equal for the pure metal and its oxide. In the case of Cr the influence of the oxide is about seven times greater than that of the pure metal. Furtheron it is shown by annealing experiments that the degree of precipitation has also an influence on the transition temperature in the system of lead with Fe, Co and CO2O3.  相似文献   

6.
The effects of isovalent Sb substitution on the superconducting properties of the Ca0.88La0.12Fe2(As1-ySby)2 system have been studied through electrical resistivity measurements. It is seen that the antiferromagnetic or structural transition is suppressed with Sb content, and a high-Tc superconducting phase, accompanied by a low-Tc phase, emerges at 0.02 ≤ y ≤ 0.06. In this intermediate-doping regime, normal-state transport shows non-Fermi-liquid-like behaviors with nearly T-linear resistivity above the high-Tc phase. With further Sb doping, this high-Tc phase abruptly vanishes for y > 0.06 and the conventional Fermi liquid is restored, while the low-Tc phase remains robust against Sb impurities. The coincidence of the high-Tc phase and non-Fermi liquid transport behaviors in the intermediate Sb-doping regime suggests that AFM fluctuations play an important role in the observed non-Fermi liquid behaviors, which may be intimately related to the unusual nonbulk high-Tc phase in this system.  相似文献   

7.
Films of lead are deposited on a superconducting substrate. The transition temperatureT c of this sandwich is measured as a function of the lead thicknessD Pb . In different experiments the properties (thickness, transition temperature, mean free path of electrons) of the substrate are varied. It is especially interesting that the initial slope (small lead thickness) of theT c (D Pb )-curve is independent of the electronic mean free path of the superconducting substrate and inversely proportional to its thickness. The results for different thicknesses of the components in the system indium — lead can be well described by a theory ofdeGennes andWerthamer.  相似文献   

8.
We show that the superconducting transition temperature T c (H) of a very thin highly disordered film with strong spin-orbital scattering can be increased by a parallel magnetic field H. This effect is due to the polarization of magnetic impurity spins, which reduces the full exchange scattering rate of electrons; the largest effect is predicted for spin-1/2 impurities. Moreover, for some range of magnetic impurity concentrations, the phenomenon of superconductivity induced by magnetic field is predicted: the superconducting transition temperature T c (H) is found to be nonzero in the range of magnetic fields 0 < H* ≤ HH c .  相似文献   

9.
A new approach is proposed for calculating the Debye temperature of a nanocrystal in the form of an n-dimensional rectangular parallelepiped with an arbitrary microstructure and the number of atoms N ranging from 2n to infinity. The geometric shape of the system is determined by the lateral-to-basal edge ratio of the parallelepiped. The size dependences of the Debye and melting temperatures for a number of materials are calculated using the derived relationship. The theoretical curves thus obtained agree well with the experimental data. The calculated dependences of the superconducting transition temperature T c on the size d of aluminum, indium, and lead nanocrystals are also in reasonable agreement with the experimental estimates of T c (d). It is demonstrated that, as the nanocrystal size d decreases, the greater the deviation of the nanocrystal shape from an equilibrium shape (in our case, a cube), the higher the temperature of the superconducting transition T c (d). The superconducting transition temperature is calculated as a function of the thickness (diameter) of a plate (rod) with an arbitrary length. It is found that a decrease in the thickness (diameter) of the plate (rod) leads to an increase in the temperature T c (z): the looser the microstructure of the metallic nanocrystal, the higher the temperature T c (z).  相似文献   

10.
Experimental data on the superconductivity of In-doped PbzSn1?zTe alloys (z=0.2) are discussed. The superconducting transition was detected from simultaneous measurements of the resistivity and magnetic susceptibility of a series of samples with different indium contents (2–12 mol % InTe). The superconducting transition detected by the magnetic susceptibility was observed at a temperature which was, on the average, 0.1 K below that determined from the resistivity. The increase in the superconducting transition temperature T c with increasing indium content is of a threshold character, with T c being proportional to the inverse electronic density of states at the Fermi level. The observed features in the experimental data are accounted for in terms of indium impurity resonance states in the material.  相似文献   

11.
Nucleation of superconducting phase in proximity coupled superconductor(SC)-antiferromagnetic(AF) multilayers is studied theoretically. For SC layer we use the usual Usadel equations. As an AF layer we consider a normal metal which undergos the magnetic phase transition associated with the nesting electron and hole Fermi surfaces. The basic formalism, suitable for study of the SC phase of the SC/AF system is presented. The superconducting transition temperature,T c , and upper critical fields,H c2‖ (T) andH c2⊥ (T) have been calculated.  相似文献   

12.
We have studied the Nb(70 nm)/Ni0.65Cu0.35(6.5 nm)/Si layered structure in the temperature range T = 1.5–10 K using polarized neutron reflectometry. The correlation of the states of magnetic structures is observed at temperature T = 9 K, which is slightly higher than the superconducting transition temperature Tc = 8.5 K of the structure. At temperature T = 4 K, which is lower than Tc, the effect of reflexivity of magnetic states existing at T = 9 K was observed.  相似文献   

13.
Oscillations in the superconducting transition temperature ΔT c (P), in the critical magnetic field ΔH c (P), in the thermopower α / T (T 2), and in electrical resistivity ρ(T) (P is pressure) of Mo1?x -Re x alloys are observed at low temperatures against the background of specific features related to an electronic-topological transition (ETT) in these alloys. The oscillations are sensitive to the impurity concentration: they increase when the Re impurity concentration is close to the critical concentration C c at which the ETT occurs. Oscillations are also detected in the concentration dependences of the temperature coefficient of resistivity (?ρ / ?T (C)) and the thermopower derivative (?(α/T) / ?T 2 (C)) of Mo1?x -Re x alloys at low temperatures. The former and latter oscillations are shown to correlate with each other. These specific features are assumed to result from the ETT and to be related to the localization of the part of the electrons that fill a new cavity in the Fermi surface during this transition.  相似文献   

14.
The local crystal structure of superconducting powders of iron chalcogenides FeTexSe1–x (x = 0.1, 0.22, 0.49, 0.8, 0.9) prepared by dry synthesis (without mineralizer) has been studied by EXAFS spectroscopy above the K Se and K Fe absorption edges in the temperature range of 80–300 K. The dependences of Se–Fe, Fe–Te, and Fe–Fe interatomic bond lengths and degrees of their local disordering (Debye–Waller factors) on the tellurium content and temperature have been obtained. Einstein temperatures characterizing the stiffness of each bond have been determined. The correlation of the Se–Fe bond stiffness with the dependence of the critical temperature of the superconducting transition Tc on the composition of the samples under study have been established, which indicates the specific role of the Se–Fe bond in the superconducting state formation in iron chalcogenides FeTexSe1–x.  相似文献   

15.
We study disorder effects upon the temperature behavior of the upper critical magnetic field in an attractive Hubbard model within the generalized DMFT+Σ approach. We consider the wide range of attraction potentials U—from the weak coupling limit, where superconductivity is described by BCS model, up to the strong coupling limit, where superconducting transition is related to Bose–Einstein condensation (BEC) of compact Cooper pairs, formed at temperatures significantly higher than superconducting transition temperature, as well as the wide range of disorder—from weak to strong, when the system is in the vicinity of Anderson transition. The growth of coupling strength leads to the rapid growth of Hc2(T), especially at low temperatures. In BEC limit and in the region of BCS–BEC crossover Hc2(T), dependence becomes practically linear. Disordering also leads to the general growth of Hc2(T). In BCS limit of weak coupling increasing disorder lead both to the growth of the slope of the upper critical field in the vicinity of the transition point and to the increase of Hc2(T) in the low temperature region. In the limit of strong disorder in the vicinity of the Anderson transition localization corrections lead to the additional growth of Hc2(T) at low temperatures, so that the Hc2(T) dependence becomes concave. In BCS–BEC crossover region and in BEC limit disorder only slightly influences the slope of the upper critical field close to T c . However, in the low temperature region Hc2 (T may significantly grow with disorder in the vicinity of the Anderson transition, where localization corrections notably increase Hc2 (T = 0) also making Hc2(T) dependence concave.  相似文献   

16.
The magnetic and magneto-optical properties of nanocrystalline Fe/Zr and Fe/Zr/Fe thin-film systems have been studied using the magneto-optical method. The strong effect of Zr layer thickness t Zr on the magnetic properties of Fe/Zr samples was discovered. It was found that the value of the saturation field of the Fe/Zr/Fe systems oscillates as a function of t Zr, which is explained by the oscillating character of the exchange interaction between ferromagnetic layers via a Zr spacer with the change in t Zr. It was established that the values of the transverse Kerr effect depend on the thicknesses of both magnetic and nonmagnetic layers.  相似文献   

17.
Temperature dependences of the resistivity ρ(T) of samples of granular high-temperature superconductor YBa2Cu3O7 – δ are measured at various transverse external magnetic fields at 0 < H ext < 1900 Оe in the temperature range from the upper Josephson critical temperature of “weak bonds” T c2J to temperatures slightly exceeding the superconducting transition temperature T c . Based on the data obtained, the behavior of the field dependences of the critical temperatures of superconducting grains and “weak bonds,” and temperature and field dependences of the magnetic contribution to the resistivity \(\left[ {\Delta \rho \left( {T,H} \right) = \rho {{\left( T \right)}_{{H_{ext}} = const}} - \rho {{\left( T \right)}_{{H_{ext}} = 0}}} \right]\). It is shown that the behavior of the magnetic contribution to the resistivity Δρ along the line of the phase transition related to the onset of the magnetic field penetration in the form of Abrikosov vortices into the subsystem of superconducting grains T c1g (H ext) is anomalous. The concepts on the magnetic flux redistribution between both subsystems of two-level HTSC near in the vicinity of T c1g : the Josephson vortex decreases, and the Abrikosov vortex density increases.  相似文献   

18.
It is shown for the first time that the superconducting transition in optimally doped Y- and Bi-based high-T c superconductors is preceded by the Lifshitz topological transition in their electron systems. A intense hole-electron conversion occurring in the system of charge carriers at T = T c + (~10 K) is a clear cut signature of such transition.  相似文献   

19.
The magnetization M(H) in the superconducting state, dc magnetic susceptibility χ(T) in the normal state, and specific heat C(T) near the superconducting transition temperature T c have been measured for a series of fine-crystalline YBa2Cu3O y samples having nearly optimum values of y = 6.93 ± 0.3 and T c = (91.5 ± 0.5) K. The samples differ only in the degree of nanoscale structural inhomogeneity. The characteristic parameters of superconductors (the London penetration depth and the Ginzburg–Landau parameter) and the thermodynamic critical field H c are determined by the analysis of the magnetization curves M(H). It is found that the increase in the degree of nanoscale structural inhomogeneity leads to an increase in the characteristic parameters of superconductors and a decrease in H c(T) and the jump of the specific heat ΔC/T c. It is shown that the changes in the physical characteristics are caused by the suppression of the density of states near the Fermi level. The pseudogap is estimated by analyzing χ(T). It is found that the nanoscale structural inhomogeneity significantly enhances and probably even creates the pseudogap regime in the optimally doped high-T c superconductors.  相似文献   

20.
The change in transition temperature for thin Sn and Tl films has been measured after deposition of dielectric substances. The change in transition temperature is inversely proportional to the thickness of the superconducting film and relatively independent of the thickness of the dielectric film. When SnS or Tl2Se is deposited on Sn films, the transition temperature is depressed. When TICl or Tl2Se is deposited on Tl films, the transition temperature is increased. When S is deposited on Tl films, there is no initial change inT c ; however,T c is appreciably increased after annealing. A possible explanation for this effect is the reduction of the free electron concentration in the metal through the formation of the contact potential between the dielectric and the metal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号