首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The structure and conformational dynamics of nonrigid cyclopropanecarbaldehyde (CPCA) molecule in the ground (Sb0) and lowest excited triplet (Tb1) and singlet (Sb1) electronic states were calculated using the MP2, DFT, CASSCF, CASPT2, and CCSD quantum chemical methods. According to ab initio calculations, in the Sb0 electronic state there are two symmetrical (cis and trans) conformers of the CPCA molecule. Excitation of the CPCA molecule to the ?1 and S1 electronic states causes significant structural changes: carbonyl CCHO fragment becomes nonplanar, cyclopropane fragment rotates around the C–C bond, thus changing the relative positions of the formyl and cyclopropane fragments. Using sections of the potential energy surfaces (PES) of the CPCA molecule in the Tb1 and Sb1 states, we calculated the torsion and inversion wave functions and vibrational transition energies. The results obtained suggest a strong coupling of the torsion and inversion motions in the Tb1 and Sb1 excited states.  相似文献   

2.
Extensive time-dependent DFT (TDDFT) and DFT/multireference configuration interaction (MRCI) calculations are performed on the singlet and triplet excited states of free-base porphyrin, with emphasis on intersystem crossing processes. The equilibrium geometries, as well as the vertical and adiabatic excitation energies of the lowest singlet and triplet excited states are determined. Single and double proton-transfer reactions in the first excited singlet state are explored. Harmonic vibrational frequencies are calculated at the equilibrium geometries of the ground state and of the lowest singlet and triplet excited states. Furthermore, spin–orbit coupling matrix elements of the lowest singlet and triplet states and their numerical derivatives with respect to nuclear displacements are computed. It is shown that opening of an unprotonated pyrrole ring as well as excited-state single and double proton transfer inside the porphyrin cavity lead to crossings of the potential energy curves of the lowest singlet and triplet excited states. It is also found that displacements along out-of-plane normal modes of the first excited singlet state cause a significant increase of the 2|Hso|S1>, 1|Hso|S1>, and 1|Hso|S0> spin–orbit coupling matrix elements. These phenomena lead to efficient radiationless deactivation of the lowest excited states of free-base porphyrin via intercombination conversion. In particular, the S1→T1 population transfer is found to proceed at a rate of ≈107 s−1 in the isolated molecule.  相似文献   

3.
Quantum chemical studies employing combined density functional and multireference configuration interaction methods suggest five excited electronic states to be involved in the prompt and delayed fluorescence emission of TpAT-tFFO. Three of them, a pair of singlet and triplet charge transfer (CT) states (S1 and T1) and a locally excited (LE) triplet state (T3), can be associated with the (Me → N) conformer, the other two CT-type states (S2 and T2) form the lowest excited singlet and triplet states of the (Me → Ph) conformer. The two conformers, which differ in essence by the shearing angle of the face-to-face aligned donor and acceptor moieties, are easily interconverted in the electronic ground state whereas the reorganization energy is substantial in the excited singlet state, thus explaining the two experimentally observed time constants of prompt fluorescence emission. Forward and reverse intersystem crossing between the singlet and triplet CT states is mediated by vibronic spin–orbit interactions involving the LE T3 state. Low-frequency vibrational modes altering the distance and alignment of the donor and acceptor π-systems tune the S1 and T3 states (likewise S2 and T3) into and out of resonance. The enhancement of intersystem crossing due to the interplay of vibronic and spin–orbit coupling is considered a general feature of organic through-space charge-transfer thermally activated delayed fluorescence emitters.

DFT/MRCI quantum chemical studies suggest five excited electronic states to be involved in the prompt and delayed fluorescence emission of TpAT-tFFO.  相似文献   

4.
The potential surfaces of (2π + 2π) cyclization of bis(3-thioxo-1-propenyl) sulfide in the S 0, T 1, and S 1 states were studied using quantum-chemical methods of molecular simulation. In the S 0 and S 1 states, the cyclization yields a thiabicyclic structure. In the T 1 state, three cyclization pathways yielding thiabicyclic, thiirane, or thiophene structure are possible.  相似文献   

5.
The structures of isomeric 2-and 4-azidostyrylquinolines and their protonated forms in the ground (S 0) and the lowest excited singlet (S 1) states were calculated by the PM3 semiempirical method and the density functional theory (DFT) using the B3LYP/6-31G* basis set. It was shown that the σ NN * molecular orbital, which is localized on the azide group and is antibonding for the N-N2 bond, is populated in the S1 state of these azides in both neutral and protonated forms. Based on this result, it was assumed that the test azides would be photoactive in both forms, i.e., would have a photodissociation quantum yield of φ > 0.1. The calculation of absorption spectra by the TD B3LYP/6-31G* method showed that the long-wavelength absorption bands of the protonated forms are shifted to visible spectral region, thus suggesting that azidostyrylquinolines in the protonated form will be sensitive to visible light.  相似文献   

6.
The temperature dependence of the heat capacity of triphenylantimony dibenzoate Ph3Sb(OC(O)Ph)2 is studied in the range of 6–480 K by means of precision adiabatic vacuum calorimetry and differential scanning calorimetry. The melting of the compound is observed in this temperature range, and its standard thermodynamic characteristics are identified and analyzed. Ph3Sb(OC(O)Ph)2 is obtained in a metastable amorphous state in a calorimeter. The standard thermodynamic functions of Ph3Sb(OC(O)Ph)2 in the crystalline and liquid states are calculated from the obtained experimental data: Cp°(T), H°(T)–H°(0), S°(T), and G°(T)–H°(0) for the region from T → 0 to 480 K. The standard entropy of formation of the compound in the crystalline state at T = 298.15 K is determined. Multifractal processing of the low-temperature (T < 50 K) heat capacity of the compound is performed. It is concluded that the structure of the compound has a planar chain topology.  相似文献   

7.
The systems of torsional vibration levels of the trans and cis methacryloyl chloride isomers in the ground (S 0) and excited (S 1) electronic states obtained by analyzing the vibrational structure of the gas-phase UV spectrum were used to reproduce the internal rotation potential functions of the molecule in both electronic states. The kinematic F factor in the S 0 and S 1 electronic states was calculated taking into account the relaxation of geometric parameters depending on the internal rotation angle. The internal rotation potential function parameters in the S 0 state are substantially different from the parameters obtained using the torsional levels of the IR Fourier transform spectrum; at the same time, they are substantiated by quantum-mechanical calculations.  相似文献   

8.
The P-type delayed fluorescence (DF) Si→So of aromatic compounds results from the population of excited singlet states Si by triplet—triplet annihillation (TTA) of molecules in their lowest and metastable triplet state T1 : T1 + T1
Si + So; Si may be any excited singlet state whose excitation energy E(Si ? 2 E(T1). TTA of unlike molecules A and B (hetero-TTA) may lead to excited singlet states either of A or of B. In particular, if E(TA1) < E(T1B), hetero-TTA may lead to excited singlet states SkA which are not accessible by TTA of 2 T1A. In the present paper we report the first example of the detection of the DF from a very short-lived upper excited singlet state SkA which has been populated by hetero-TTA. The systems investigated are liquid solutions of A = anthracene-h10 or anthracene-d10 or 9,10-dimethylanthracene and B = xanthone in 1,1,2-trichlorotrifluoroethane at 243 K. SkA is the lowest 1B3U+ state (Bb state) of anthracene.  相似文献   

9.
An analysis of the vibrational structure of the UV spectrum of methacryloyl chloride vapor was performed. The spectrum contained unique information about the torsional vibration levels of the trans and cis isomers in the ground (S 0) and excited (S 1) electronic states. 136 absorption bands were revealed, and ~85% of them were assigned. The 0-0 transition frequencies of the trans and cis isomers were found. Several Deslandres tables were constructed for torsional vibrations from 0-0 transition frequencies and “local origins” corresponding to fundamental and combined frequencies of both isomers. Systems of torsional levels up to high quantum number values (v ≈ 6–8) were determined, and the ωe harmonic frequencies and χ 11 anharmonicity coefficients were calculated for both isometric forms in the ground (S 0) and excited (S 1) states. The results were substantially different from those obtained in an analysis of Fourier-transform IR spectra.  相似文献   

10.
The relative stability of the trans-and cis-isomers of 3,3′-diethylthiacarbocyanine (Dye1) and 3,3′-diethyl-9-methylthiacarbocyanine (Dye2)1, as well as sections of the potential energy surfaces along the internal coordinate of the isomerization reaction, were studied using the density functional theory. Calculation of the minimum energy pathway for the isomerization reaction showed that the barrier for rotation about the C8–C9 bond is higher for Dye1 than for Dye2. Local minimums were found for the singlet excited state of the 8,9-cis-and trans-isomers of the dyes. In the case of the trans-isomers, substantial changes in the dye structure do not occur and the local minimum of the excited state corresponds to the geometry of the starting trans-isomers, which favors efficient fluorescence. A search for the nearest local minimum of the singlet excited state of the 8,9-cis-isomers leads to structures, which differ significantly from the starting structures, and the intensity of the S1 → S0 transition in those structures appears to be practically zero. The results are in agreement with experimental data on the absorption, fluorescence, and fluorescence excitation spectra of the dyes.  相似文献   

11.
The heat capacity and the temperatures and enthalpies of physical transformations of the alternating terpolymer of carbon monoxide, ethylene, and 1-butene (the content of butene units is 10.7 mol.%) were studied by adiabatic and differential scanning calorimetry in the temperature range from 6 to 520 K. The energy of terpolymer combustion was measured at 298.15 K on an calorimeter with an isothermal shell and static bomb. The standard thermodynamic functions C°p(T), H°(T)–H°(0), S°(T)–S°(0), and G°(T)–H°(0) for the range from Т → 0 to 400 K, the standard enthalpy of combustion, and the thermodynamic parameters of formation of the partially crystalline CO—ethylene—1-butene terpolymer at 298.15 K, as well as the thermodynamic characteristics of its synthesis in the range from T → 0 to 400 K were calculated.  相似文献   

12.
A complex of copper perchlorate coordinated with imidazole Cu(C3N2H4)4(ClO4)2 was synthesized and characterized by X-ray single-crystal diffraction. The complex is centrosymmetric in the monoclinic P2(1)/c space group. The low-temperature molar heat capacities and thermodynamic properties of the complex were studied with adiabatic calorimetry (AC). The thermodynamic functions [H TH 298.15] and [S TS 298.15] were derived in the temperature range from 80 to 370 K with temperature interval of 5 K. Thermal decomposition behavior of the complex in nitrogen atmosphere was studied by thermogravimetric (TG) analysis and differential scanning calorimetry (DSC). The mechanism of the decomposition was deduced to be the breaking up the two Cl–O bonds of the Cl–O–Cu and the Cu–N bonds of the imidazole rings in succession.  相似文献   

13.
The thermodynamic properties of amorphous polyphenylquinoxaline in the temperature range of 6 to 570 K are studied via precision adiabatic vacuum calorimetry and differential scanning calorimetry. The thermodynamic characteristics of glass transition are determined. Standard thermodynamic functions C°p, H°(T) ? H°(0), S°(Т) ? S°(0), and G°(T) ? H°(0) in the range of T → 0 to 570 K and the standard entropy of formation at T = 298.15 K are calculated. The low-temperature (T ≤ 50 K) heat capacity is analyzed using a multifractal model for the processing of heat capacity, fractal dimension D values are determined, and conclusions on the topological structure of the compound are drawn.  相似文献   

14.
The temperature dependence of the heat capacity of a first-generation liquid crystal carbosilane dendrimer with methoxyphenyl benzoate end groups is studied for the first time in the region of 6–370 K by means of precision adiabatic vacuum calorimetry. Physical transformations are observed in this interval of temperatures, and their standard thermodynamic characteristics are determined and discussed. Standard thermodynamic functions Cp°(T), H°(T) ? H°(0), S°(T) ? S°(0), and G°(T) ? H°(0) are calculated from the obtained experimental data for the region of Т → 0 to 370 K. The standard entropy of formation of the dendrimer in the partially crystalline state at Т = 298.15 K is calculated, and the standard entropy of the hypothetic reaction of its synthesis at this temperature is estimated. The thermodynamic properties of the studied dendrimer are compared to those of second- and fourth-generation liquid crystal carbosilane dendrimers with the same end groups studied earlier.  相似文献   

15.
The heat capacity of a glassy third-generation poly(phenylene-pyridyl) dendron decorated with dodecyl groups is studied for the first time via high-precision adiabatic vacuum and differential scanning calorimetry in the temperature range of 6 to 520 K. The standard thermodynamic functions (molar heat capacity Cp°, enthalpy H°(T), entropy S°(T), and Gibbs energy G°(T)-H°(0)) in the range of T → 0 to 480 K, and the entropy of formation at 298.15 K, are calculated on the basis of the obtained data. The thermodynamic properties of the dendron and the corresponding third-generation poly(phenylene-pyridyl) dendrimer studied earlier are compared.  相似文献   

16.
The heat capacities of first- and third-generation carbosilane dendrimers with terminal phenyldioxolane groups are studied as a function of temperature via vacuum and differential scanning calorimetry in the range of 6 to 520 K. Physical transformations that occur in the above temperature range are detected and their standard thermodynamic characteristics are determined and analyzed. Standard thermodynamic functions Cpο(T), [H°(T) ? H°(0)], [S°(T) ? S°(0)], and [G°(T) ? H°(0)] in the temperature range of T → 0 to 520 K for different physical states and the standard entropies of formation of the studied dendrimers at T = 298.15 K are calculated, based on the obtained experimental data.  相似文献   

17.
The products of photolysis of N-substituted salicylic acid amides, viz., 2-hydroxy-3-tert-butyl-5-ethylbenzoic acid N-(4-hydroxy-3,5-di-tert-butylphenyl)amide (1) and 2-hydroxybenzoic acid N-[3-(4-hydroxy-3,5-di-tert-butylphenyl)prop-1-yl]amide (2), in heptane were studied by optical spectroscopy and stationary and nanosecond laser photolysis (Nd: YAG laser, 355 nm). It was shown by the method of partial deuteration of amides 1 and 2 that they exist in both the unbound state and as complexes with intraand intermolecular hydrogen bond. Amides 1 and 2 are subjected to photolysis, which results in the formation of a triplet state and phenoxyl radicals RO? presumably due to the absorption of the second photon by the excited singlet state. The formation of radical products due to N–H bond ionization was not observed. The main channel of decay of the triplet state and radicals RO? is triplet–triplet annihilation and recombination (k r ≈ 2.3?108 L mol–1 s–1), respectively. The UV irradiation of compounds 1 and 2 leads to the excitation of the amide groups, and no formation of radical products due to N–H bond ionization was observed.  相似文献   

18.
Hydroxymethylation of bicyclic allylsilane, (3aR,6R,6aS)-3,3a,6,6a-tetrahydro-6-(trimethylsilyl)-cyclopenta[c]furan-1-one with formaldehyde by Prins reaction proceeds via SE2' mechanism with the formation of anti-addition product. Some reactions of obtained (3aS,4S,6aR)-4-(hydroxymethyl)-3,3a,4,6a-tetrahydro-1H-cyclopenta[c]furan-1-one were investigated.  相似文献   

19.
20.
A comparative quantum chemical analysis has been made for the most stable dimer of nitrogen oxide with the structure cis-ONNO in a singlet state 1A1 by ab initio method of SCF MO LCAO, allowing for electron correlation according to Meller-Plesset perturbation theory of the second order (MP2), and density functional technique (DFT). The computations by MP2 method show anion-radical (ONNO)? to have a strong bond between nitrogen atoms (N-N 1.44 Å) in contrast to molecular weakly bound cis-dimer with equilibrium distance N-N 2.23 Å. Molecular orbital structure of the dimer and its anions was examined that made it possible to suggest a reason of preferable stabilization of nitrogen oxide dimer in the cis-form. Calculated high affinity to electron (Ea = ?1.55-?1.69 eV) for the molecular dimer ONNO (1A1) explains an intense strengthening of N-N bond in anion-radical and confirms the experimental data on a possibility of surface anion-π-radical formation on electron donor centers. The DFT computations indicate that this technique poorly reproduces the experimental geometry and electron structure of the cis-dimer ONNO having predicted a triplet ground state with the equilibrium distance N-N ≈2 Å instead of a singlet one with N-N 2.26 Å. The comparison between MP2 and DFT calculations for complex dimer ONNO with copper cation reveals the energy state of the complex (Cu-O2N2)+ corresponding to stabilization of anion-π-radical (N2O2)? {term-3A2, Cu(d)9-(ONNO)?1} to be highly overestimated by DFT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号