首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High pressure evolution of structural, vibrational and magnetic properties of La0.75Ca0.25MnO3 was studied by means of X-ray diffraction and Raman spectroscopy up to 39 GPa, and neutron diffraction up to 7.5 GPa. The stability of different magnetic ground states, orbital configurations and structural modifications were investigated by LDA + U electronic structure calculations. A change of octahedral tilts corresponding to the transformation of orthorhombic crystal structure from the Pnma symmetry to the Immaone occurs above P ~ 6 GPa. At the same time, the evolution of the orthorhombic lattice distortion evidences an appearance of the e g d x² ? z² orbital polarization at high pressures. The magnetic order in La0.75Ca0.25MnO3 undergoes a continuous transition from the ferromagnetic 3D metallic (FM) ground state to the A-type antiferromagnetic (AFM) state of assumedly 2D pseudo-metallic character under pressure, that starts at about 1 GPa and extends possibly to 20–30 GPa.  相似文献   

2.
Electrical transport and structural characterizations of isoelectronically substituted Ba(Fe0.9Ru0.1)2As2 have been performed as a function of pressure up to ~ 30 GPa and temperature down to ~ 10 K using designer diamond anvil cell. Similar to undoped members of the AFe2As2 (A = Ca, Sr, Ba) family, Ba(Fe0.9Ru0.1)2As2 shows anomalous a-lattice parameter expansion with increasing pressure and a concurrent ThCr2Si2 type isostructural (I4/mmm) phase transition from tetragonal (T) phase to a collapsed tetragonal (cT) phase occurring between 12 and 17 GPa where the a is maximum. Above 17 GPa, the material remains in the cT phase up to 30 GPa at 200 K. The resistance measurements show evidence of pressure-induced zero resistance that may be indicative of high-temperature superconductivity for pressures above 3.9 GPa. The onset of the resistive transition temperature decreases gradually with increasing pressure before completely disappearing for pressures above ~ 10.6 GPa near the T-cT transition. We have determined the crystal structure of the high-T c phase of Ru-doped BaFe2As2 to remain as tetragonal (I4/mmm) by analyzing the X-ray diffraction pattern obtained at 10 K and 9.7 ± 0.7 GPa, as opposed to inferring the structural transition from electrical resistance measurement, as in a previous report [S.K. Kim, M.S. Torikachvili, E. Colombier, A. Thaler, S.L. Bud’ko, P.C. Canfield, Phys. Rev. B 84, 134525 (2011)].  相似文献   

3.
The thermophysical properties of oxyfluoride (NH4)3NbOF6 were studied in detail over wide ranges of temperatures and pressures. At atmospheric pressure, a sequence of four structural phase transitions was established with the following changes in entropy: ΔS 1 = Rln 2.7, δS 2 = Rln38.3, ΔS 3 = 0.08R, and ΔS 4 = 0.17R. An external hydrostatic pressure was found to narrow the region of existence of the initial cubic phase. A triple point was detected in the p-T diagram; at a pressure above 0.07 GPa, the transition between the tetragonal and monoclinic phases occurs through a distorted high-pressure phase.  相似文献   

4.
Ab initio calculations of the structural, electronic, and optical properties of the CdB4O7 and HgB4O7 tetraborate compounds in three structural modifications with the Pbca, Cmcm, and Pmn21 symmetry have been performed in the framework of the density functional theory using the VASP package. The calculations of the electronic band structure showed that these compounds in all the investigated modifications are dielectrics with a band gap of 2–4 eV. The calculation of the structural properties of the tetraborates under pressure showed that the phase transition between the Pbca and Pmn21 structures in cadmium and mercury tetraborates occurs under pressures of 4.8 and 4.7 GPa, respectively.  相似文献   

5.
We report first-principles studies the structural, electronic, and optical properties of the Fe2SiO4 fayalite in orthorhombic structure, including pressure dependence of structural parameters, band structures, density of states, and optical constants up to 30 GPa. The calculated results indicate that the linear compressibility along b axis is significantly higher than a and c axes, which is in agreement with earlier work. Meanwhile, the pressure dependence of the electronic band structure, density of states and partial density of states of Fe2SiO4 fayalite up to 30 GPa were presented. Moreover, the evolution of the dielectric function, absorption coefficient (α(ω)), reflectivity (R(ω)), and the real part of the refractive index (n(ω)) at high pressure are also presented.  相似文献   

6.
The Ru-Ru spin-singlet formation in La2 ? x L n x RuO5 (Ln = Pr, Nd, Sm, Gd, Dy) was investigated by measurements of the specific heat and magnetic susceptibility. After subtraction of the lattice contribution from the specific heat (C p ), similar excess entropy values were obtained for all compounds. These entropies can be explained by the formation of antiferromagnetic Ru-spin dimers at low temperatures and provide a lower estimate for the intradimer exchange strength. Pronounced changes in the transition temperatures and a broadening of the corresponding peak in C p were observed. These changes depend on the rare-earth element and are due to local structural changes and heterogeneities caused by the substitution. The magnetic susceptibilities can be described by the sum of a rare-earth paramagnetic moment and the susceptibility of the unsubstituted La2RuO5. Density functional theory (DFT) calculations were performed for various compounds to investigate the origin of the magnetic transition and the relationship between structural changes and the spin-dimerization temperature. The combination of the present results with previous structural investigations supports the model of a spin-pairing of the Ru moments which occurs as a reason of the structural phase transition in La2 ? x L n x RuO5.  相似文献   

7.
The crystal and magnetic structures of La0.75Ca0.25MnO3 manganite are studied under high pressures up to 4.5 GPa in the temperature range 12–300 K by the neutron diffraction method. At normal pressure and temperature T C = 240 K, a ferromagnetic state is formed in La0.75Ca0.25MnO3. At high pressures P ≥ 1.5 GPa and at temperatures T < T N ≈ 150 K, a new A-type antiferromagnetic state appears. A further increase in pressure leads to an increase in the volume fraction of the antiferromagnetic phase, which coexists with the initial ferromagnetic phase. The effect of high pressure causes a considerable increase in T C with the slope dT C /dP ≈ 12 K/GPa. Calculations performed in the framework of the double exchange model with allowance for the electron-phonon interaction make it possible to explain this pressure dependence of T C on the basis of experimental data.  相似文献   

8.
We have studied the structural, elastic, electronic properties, and pressure-induced phase transition of CuGaO2 by using the plane-wave ultrasoft pseudopotential technique based on the first-principles density-functional theory (DFT). The obtained ground state properties of three phases were in agreement with previous works. The calculated enthalpy variations with pressure showed that the structural phase transition (β → 3R/2H) appeared at 65.5 ± 1 GPa. The changes in volume and band gap of β phase showed that there was a break between 30 and 40 GPa. The independent elastic constants of three phases were calculated. The 3R, 2H, and β phases were all mechanical stability and behaved in ductile manner under zero pressure.  相似文献   

9.
The effect of high pressure up to 65 GPa on the crystal structure and optical absorption spectra of NdFeO3 orthoferrite single crystals is studied in diamond anvil cells. At P~37.5 GPa, an electronic transition at which the optical absorption edge jumps from ~2.2 to ~0.75 eV is observed. The equation of state V(P) is studied on the basis of the X-ray diffraction data obtained under pressure. This study reveals a first-order structural phase transition at P~37 GPa with a jump of ~4% in the unit cell volume. It is shown that the phase transition observed in rare-earth orthoferrites at 30–40 GPa is a transition of the insulator-to-semiconductor type.  相似文献   

10.
A new perovskite-like compound Er0.73Cu3V4O12 (space group Im \(\bar 3\), Z = 2, a = 7.266 Å) has been synthesized barothermally (P = 8.0 GPa, t = 1000°C). Its electrical and magnetic properties have been studied. It is found that the temperature dependence of the electrical conductivity (in the range 78–300 K) has of semiconductor type. The behavior of the impedance and admittance has been analyzed at 290 K and frequencies of 200 Hz to 200 kHz under atmospheric pressure and at high (15–42 GPa) pressures.  相似文献   

11.
Pressure-induced phase transitions in the ScF3 crystal were studied using synchrotron radiation diffraction, polarization microscopy, and Raman spectroscopy. The phase existing in the range 0.6–3.0 GPa is optically anisotropic; its structure is described by space group R 3 c (Z = 2), and the transition is due to rotation of ScF6 octahedra around a threefold axis. The pressure dependence of the structural parameters and angle of rotation are determined. The number of Raman spectral lines corresponds to that expected for this structure; above the phase transition point, a recovery of soft modes takes place. At a pressure of 3.0 GPa, a transition occurs to a new phase, which remains metastable as the pressure decreases. The results are interpreted using an ab initio method based on the Gordon-Kim approach.  相似文献   

12.
The isothermal magnetization of the Bi1 – xHo x FeO3 (x = 0?0.2) multiferroic has been studied at a hydrostatic pressure up to 9 GPa in the range of room temperatures. A new anomaly at PC ≈ 3.81 GPa related to intermediate phases between the structural transition R3cPnma has been found against the background of the pressure-induced antiferromagnetic ordering in BiFeO3 (BFO) at P ≈ 2.59 GPa. It is established that the ferromagnetic behavior under pressure depends on the Ho impurity concentration: PC decreases at 0.05 ≤ x ≤ 0.1 because of the decrease in R3c bond lengths in the structure, and the stabilization of ferromagnetism is implemented at 0.1 ≤ x ≤ 0.2 probably because of the coexistence of the R3c and Pnma phases. The results of studies indicate that, in Bi1 – xHo x FeO3 with x = 0.2, the transition pressure PC = 3.7 GPa exceeds the values for BFO doped with other 4f elements (Eu, Y, Sm) in the region R3cPnma of the transition.  相似文献   

13.
We present results of the combined study of the magnetic properties of Li2RuO3 by means of nuclear magnetic resonance (NMR) spectroscopy and theoretical dynamical mean-field theory (LDA + DMFT) calculations. The NMR data clearly show the onset of a thermal activation process in the high temperature region, T > 560K, which is tentatively ascribed to the formation of the valence bond liquid. The LDA + DMFT calculations demonstrate that the magnetic response at these temperatures is mostly due to the xz/yz orbitals, while the xy orbitals of Ru still form molecular orbitals. Thus, Ru ions are in the orbital-selective state in the high temperature phase of Li2RuO3.  相似文献   

14.
Temperature dependences of specific heat Cp(T) and coefficient of thermal expansion ;(T) for Na0.95Li0.05NbO3 sodium-lithium niobate ceramic samples are investigated in the temperature range of 100–800 K. The Cp(T) and α(T) anomalies at T3 = 310 ± 3 K, T2 = 630 ± 8 K, and T1 = 710 ± 10 K are observed, which correspond to the sequence of phase transitions N ? Q ? S(R) ? T2(S). The effect of heat treatment of the samples on the sequence of structural distortions was established. It is demonstrated that annealing of the samples at 603 K leads to splitting of the anomaly corresponding to the phase transition QR/S in two anomalies. After sample heating to 800 K, the only anomaly is observed in both the Cp(T) and ;(T) dependence. Possible mechanisms of the observed phenomena are discussed.  相似文献   

15.
The effect of high pressure on electron transport and on the field dependence of the transverse magnetoresistance has been studied in a hybrid nanocomposite based on the Zn0.1Cd0.9GeAs2 matrix and MnAs clusters. A record high negative magnetoresistance of ~74% is formed near a pressure-induced structural transition (P≈ 3.5 GPa). The considered scattering mechanisms include both the contribution from MnAs clusters at relatively low pressures (up to 0.7 GPa) and spin-dependent scattering by localized magnetic moments in the Mn-substituted structure of the matrix in the region of the structural transition. The presence of the positive magnetoresistance region associated with the two-band transport model in the high-pressure phase, as well as the large negative magnetoresistance, is described in the framework of the semiempirical Khosla–Fischer expression.  相似文献   

16.
Thermophysical and structural studies of an (NH4)2KMoO3F3 crystal show that this crystal belongs to the family of elpasolites (space group \(Fm\bar 3m\)) and undergoes an order-disorder phase transition at T 0 = 241.5 K. Under hydrostatic pressure, this phase transition splits into two consecutive transitions at the tricritical point with parameters T tr = 232.5 K and p tr=0.21 GPa. It was found that anomalous hysteresis and relaxation phenomena accompany the transitions from the cubic to both distorted phases. The results are analyzed taking into account the data on the phase transition in the related elpasolite (NH4)2KWO3F3.  相似文献   

17.
Change in the crystal structure of the BiFeO3 multiferroic at high pressures up to 70 GPa in a diamond anvil cell has been studied by the method of synchrotron x-ray diffraction at room temperature. The experiment has been carried out under hydrostatic conditions with helium as a pressure-transferring medium. An anomaly has been observed in the behavior of the structural parameters at pressures P c ≈ 40?50 GPa. This anomaly correlates with the effect of the magnetic collapse of iron moments revealed in this pressure range. It has been found that the bulk compression modulus is equal to B 0 = (75.5 ± 15.5) GPa in the interval 0 < P < P c and is almost quadrupled to a value of B = (292 ± 9) GPa in the interval P > P c. When the pressure decreases, the behavior of the structural parameters is completely reversible in correlation with the reversibility of the magnetic transition. The “diffuseness” of the structural transition in pressure is explained by thermal fluctuations between the high-and low-spin states of Fe3+ ions in the transition region.  相似文献   

18.
The thermal properties and structure of (ND4)2WO2F4 crystals are investigated. It is established that deuteration does not lead to a change in the symmetry of the initial phase Cmcm but considerably decreases the extent of its disordering, which, in turn, brings about a substantial decrease in the phase transition entropy. Apart from the anomalies associated with phase transitions characteristic of the protonic compound, the heat capacity exhibits two additional anomalies. Analysis of the phase diagram of the deuterated crystal reveals a triple point at a pressure p = 0.18 GPa, which is predicted for (NH4)2WO2F4 at about 0.7 GPa.  相似文献   

19.
Single crystals of the K3H(SO4)2 compound are investigated using X-ray diffraction on Xcalibur S and Bruker diffractometers. The structure of the low-temperature monoclinic phase is refined (space group C2/c, z = 4, a = 14.698(1) Å, b = 5.683(1) Å, c = 9.783(1) Å, β = 103.01(1)°, T = 293 K, Bruker diffractometer), the structural phase transition is revealed, and the structure of the high-temperature trigonal phase is determined (space group R \(\bar 3\) m, z = 3, a = 5.73(1) Å,c = 21.51(1) Å,T = 458 K, Xcalibur diffractometer).  相似文献   

20.
Lead-free Na0.5Bi0.5TiO3 (NBT) and (1 ? x)Na0.5Bi0.5TiO3 + xBaTiO3 with x = 0.1 and 0.2 (where x = 0.1 and 0.2 are named as NBT1 and NBT2, respectively), (1 ? y)Na0.5Bi0.5TiO3 + yBa0.925Nd0.05TiO3 with y = 0.1 and 0.2 (where y = 0.1 and 0.2 are named as NBT3 and NBT4, respectively)-based relaxor ferroelectric ceramics were prepared using the sol-gel method. The crystal structure was investigated by X-ray diffraction (XRD) at room temperature (RT). The XRD patterns confirmed the presence of the rhombohedral phase in all the samples. The electrical properties of the present NBT-based samples were investigated by complex impedance and the modulus spectroscopy technique in the temperature range of RT–600 °C. The AC conductivity was found to increase with the substitution of Ba2+ ions to the NBT sample whereas it significantly decreased with the addition of Nd3+ ions. The more anion vacancies in Ba-added samples and the lower anion vacancies in Nd-added samples were found to be responsible for higher and lower conductivities, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号