首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
S. G. Pavlov 《Laser Physics》2007,17(8):1037-1040
Raman-type Stokes stimulated emission in the far-infrared wavelength range (52–65 μm) has been realized in silicon crystals doped by group-V hydrogen-like donor centers at low temperatures under optical excitation by radiation from a pulsed frequency-tunable infrared free-electron laser. The light scattering appears as an entire intracenter process and occurs on the donor electronic transitions being resonant to the intervalley transverse acoustic g phonon. The outgoing and incoming electronic donor resonances amplify the efficiency of scattering, so that the Raman optical gain increases to the values observed for the infrared room temperature Raman silicon lasers.  相似文献   

2.
In this work we present a detailed structural of a series of B-doped hydrogenated microcrystalline silicon (μc-Si:H) films deposited by plasma-enhanced chemical vapor deposition (PECVD) and B-doped polycrystalline silicon (poly-Si) films produced by step-by-step laser crystallization process from amorphous silicon. The influence of doping on the structural properties and structural changes during the sequential crystallization processes were monitored by Raman spectroscopy. Unlike μc-Si:H films, that consist of a two-phase mixture of amorphous and ordered Si, partially crystallized sample shows a stratified structure with polycrystalline silicon layer at the top of an amorphous layer. With increasing doping concentration the LO-TO phonon line in poly-Si shift to smaller wave numbers and broadens asymmetrically. The results are discussed in terms of resonant interaction between optical phonons and direct intraband transitions known as a Fano resonance. In μc-Si:H films, on the other hand, the Fano effect is not observed. The increase of doping in μc-Si:H films suppressed the crystalline volume fraction, which leads to an amorphization in the film structure. The structural variation in both μc-Si:H and poly-Si films leads to a change in hydrogen bonding configuration.  相似文献   

3.
Raman scattering from Si-implantation-amorphized and subsequently thermally recrystallized silicon on sapphire (SOS) shows that optical phonon frequencies of silicon well correlate with the recrystallization temperature rather than the epitaxial temperature. This implies that the strain in as-epitaxial SOS has been relieved and replaced by the one which depends upon the recrystallization temperature.  相似文献   

4.
The polarized Raman spectra of LiTbF4 have been investigated at several temperaturesT150 K, and the temperature dependence of the selfenergies of optical phonons due to the magnetoelastic interaction have been determined. The sizes of these temperature shifts, of the magnetic phonon splittings and of the level repellings between resonant optical phonons and crystal field states have been calculated using the theory of magnetoelastic interaction by Fulde and Thalmeier without any adjustable parameters, considering the modulation of the crystalline electric field by the optical phonons. The phonon modes of LiTbF4 have been determined in a rigid-ion approximation. Reasonable to good agreement with the experimental results has been obtained for most of the phonon modes.  相似文献   

5.
利用微波电子回旋共振等离子体增强型化学气相沉积(ECR-PECVD)采用一步法直接在K9玻璃上低温沉积制备了多晶硅薄膜.研究了不同实验参数对薄膜沉积的影响,采用X射线衍射(XRD)、拉曼光谱、扫描电子显微镜(SEM)等实验分析方法对不同条件下制备的样品进行了晶体结构和表面形貌分析,并讨论了多晶硅薄膜沉积的最佳条件.实验结果表明,玻璃衬底上多晶硅薄膜呈柱状生长,并有一定厚度的非晶孵化层;较高氢气比例和衬底温度有利于结晶,薄膜的结晶率达到了62%;晶粒团簇的最大尺寸约为500nm.  相似文献   

6.
利用等离子体化学气相沉积技术在100℃的衬底温度下,制备了具有不同组分比的系列非晶碳化硅薄膜。结合傅里叶变换红外光谱与喇曼光谱对所制备的薄膜微结构进行了表征与分析,同时,对具有不同组分比的非晶碳化硅薄膜室温光致发光性质进行了系统的研究。结果表明在Ar+离子激光和Xe灯紫外光的激发下,不同组分的样品显示出不同的光致发光特性,并对样品的发光特性与其微结构的联系进行了讨论。在此基础上,用碳化硅薄膜设计和制备了全固体光学微腔,研究了微腔对碳化硅发光行为的调制作用。  相似文献   

7.
Thin silicon nano-wires (SiNWs) with a diameter of 10–20 nm were fabricated by a simple thermal evaporation of silicon wafer at 1523 K. The gold produced by an electrochemical method was covered on the wafer surface as catalyst. It was found that the SiNWs are amorphous and its Raman peak shifted down maybe due to the effect of laser heating and quantum confinement. Finally, a temperature gradient growth model is suggested to explain the growth direction of SiNWs.  相似文献   

8.
多晶硅在光电子器件领域具有较为重要的用途。利用磁控溅射镀膜系统,通过共溅射技术在玻璃衬底上制备了非晶硅铝(α-Si/Al)复合膜,将Al原子团包覆在α-Si基质中,膜中的Al含量可通过Al和Si的溅射功率比来调节。复合膜于N2气氛中进行350 ℃,10 min快速退火处理,制备出了多晶硅薄膜。利用X射线衍射仪、拉曼光谱仪和紫外-可见光-近红外分光光度计对多晶硅薄膜的性能进行表征,研究了Al含量对多晶硅薄膜性能的影响。结果表明:共溅射法制备的α-Si/Al复合膜在低温光热退火下晶化为晶粒分布均匀的多晶硅薄膜;随着膜中Al含量逐渐增加,多晶硅薄膜的晶化率、晶粒尺寸逐渐增加,带隙则逐渐降低;Al/Si溅射功率比为0.1时可获得纳米晶硅薄膜,Al/Si溅射功率比为0.3时得到晶化率较高的多晶硅薄膜,通过Al含量的调节可实现多晶硅薄膜的晶化率、晶粒尺寸及带隙的可控。  相似文献   

9.
张建中  郭志友  尉然 《发光学报》2006,27(6):1007-1010
在硅波导上添加反向偏压的PIN结构,当波导产生受激喇曼散射时,可以将波导中双光子吸收(TPA)产生的光生自由载流子扫出波导,降低了波导的非线性损失,极大地提高了硅波导中泵浦光对信号光的喇曼增益。为了应用已经非常成熟的硅工艺,并且应用硅波导使器件小型化,根据法布里-帕罗(F-P)腔和行波放大器理论,在硅波导两端的解理面蒸镀增透膜,应用这种波导的喇曼效应设计了一种光放大器,即基于硅波导的喇曼光放大器。建立了计算放大器增益的方程,给出了不同波导长度和输入功率情况下的放大器增益,得出适当增加波导长度和泵浦光功率可以得到较高喇曼增益的结论。基于硅的光放大器有较高的饱和功率且没有泵浦源的限制,通过调整泵浦激光的波长可以放大不同波长的信号光。  相似文献   

10.
采用射频和脉冲磁控共溅射法并结合快速光热退火法制备了含硅量子点的SiC_x薄膜.采用掠入射X射线衍射、喇曼光谱、紫外-可见-近红外分光光度计和透射电子显微镜对薄膜进行表征.研究了脉冲溅射功率对薄膜中硅量子点数量、尺寸、晶化率和薄膜光学带隙的影响.结果表明:当溅射功率从70 W增至100 W时,硅量子点数量增多,尺寸增至5.33nm,晶化率增至68.67%,而光学带隙则减至1.62eV;随着溅射功率进一步增至110 W时,硅量子点数量减少,尺寸减至5.12nm,晶化率降至55.13%,而光学带隙却增至2.23eV.在本实验条件下,最佳溅射功率为100 W.  相似文献   

11.
苏元军  徐军  朱明  范鹏辉  董闯 《物理学报》2012,61(2):28104-028104
本文报道了利用电感耦合等离子体辅助中频直流脉冲磁控溅射在温度300 ℃ 以下沉积氢化多晶硅薄膜的制备方法. 利用拉曼散射、X射线衍射、透射电子衍射和傅里叶红外光谱对多晶硅薄膜进行了表征. 详细研究了氢气在沉积过程中所起的作用, 并结合Langmuir探针和发射光谱等等离子体诊断方法, 对辅助等离子体源在多晶硅薄膜制备过程中所起到的作用进行了讨论.  相似文献   

12.
The thermal conductivity of a grain-boundary in silicon bicrystals has been measured in the temperature range from 12°K to 150°K using a newly developed method. The analysis of the experimental results shows that the thermal conductivity is governed by two scattering processes: the acoustical mismatch of both crystal halves and the resonant scattering of the phonons by impurity atoms of the grain boundary. A new method is thereby presented for the direct observation of phonon resonant scattering.  相似文献   

13.
采用射频磁控溅射镀膜系统,在玻璃衬底上制备了非晶硅(α-Si)/铝(Al)复合薄膜,结合氮气(N2)气氛中低温快速光热退火制备了纳米晶硅(nc-Si)薄膜;利用光学显微镜、共焦光学显微仪、X射线衍射(XRD)仪、拉曼散射光谱(Raman)仪和紫外-可见光-近红外分光光度计(UV-VIS-NIR)对纳米晶硅薄膜的表面形貌、物相及光学性能进行了表征,研究了退火工艺对薄膜性能的影响。结果表明: 300 ℃,25 min光热退火可使α-Si/Al膜晶化为纳米晶硅薄膜,晶化率为15.56%,晶粒尺寸为1.75 nm;退火温度从300 ℃逐渐升高到400 ℃,纳米晶硅薄膜晶粒尺寸、晶化率、带隙逐渐增加,表面均匀性、晶格畸变量逐渐减小;退火温度从400 ℃逐渐升高到500 ℃,纳米晶硅薄膜的晶粒尺寸、晶化率继续增加,带隙则逐渐降低;采用纳米晶硅薄膜的吸光模型验证了所制备的纳米晶硅薄膜的光学特性,其光学带隙的变化趋势与吸光模型得出的结果一致。  相似文献   

14.
随着晶体管尺寸的日益缩小,不良热效应成为晶体管失效重要原因之一.现有的检测器件热分布的手段的空间分辨率较低,不能原位直观地获得这些尺寸越来越小的晶体管的工作过程中的热分布情况.本文针对以上问题,在变温系统上探索利用激光显微拉曼光谱技术原位检测晶体管的自热效应,结果表明可以通过器件衬底上硅的一阶声子振动的拉曼谱峰频率随温...  相似文献   

15.
A detailed Raman spectroscopic study of the amorphous-to-microcrystalline phase transition in hydrogenated silicon thin films on glass substrates is presented. Crystallization is induced by exposing the film surface to a continuous wave CO2-laser working at 10.6 μm, at constant irradiation time/variable power density and at constant power density/variable irradiation time. The induced crystallization is followed quantitatively by analyzing the Raman spectra of the exposed area. The crystallite size distribution and the film stress are then estimated using a parametric fitting procedure. The pertinent microcrystal geometry of the samples after CO2-laser treatment has been directly correlated to Raman spectroscopic data. Variations of several spectral features, such as bandwidths and band frequencies have been interpreted in terms of three different mechanisms including the local heating due to the CO2-laser heating, the reduction of crystallite size and the tensile stress of μc-Si:H films. The results are discussed in the context of recent experimental and theoretical works concerning the bond polarizability.  相似文献   

16.
Intrinsic hydrogenated microcrystalline silicon (\muc-Si:H) films have been prepared by hot-wire-assisted microwave electron-cyclotron-resonance chemical vapour deposition (HW-MWECR-CVD) under different deposition conditions. Fourier-transform infrared spectra and Raman spectra were measured. Optical band gap was determined by Tauc plots, and experiments of photo-induced degradation were performed. It was observed that hydrogen dilution plays a more essential role than substrate temperature in microcrystalline transformation at low temperatures. Crystalline volume fraction and mean grain size in the films increase with the dilution ratio (R=H2/(H2+SiH4)). With the rise of crystallinity in the films, the optical band gap tends to become narrower while the hydrogen content and photo-induced degradation decrease dramatically. The samples, were identified as \mu c-Si:H films, by calculating the optical band gap. It is considered that hydrogen dilution has an effect on reducing the crystallization activation energy of the material, which promotes the heterogeneous solid-state phase transition characterized by the Johnson--Mehl--Avrami (JMA) equation. The films with the needed structure can be prepared by balancing deposition and crystallization through controlling process parameters.  相似文献   

17.
The intrinsic defect photoluminescence of hydrogenated amorphous silicon (a-Si:H) films has been investigated at high intensities of optical pumping that lead to heating of the film. It has been revealed that, for short heating times, the intensity of the defect photoluminescence increases exponentially with an increase in the temperature with an activation energy of 0.85 eV, which is considerably higher than the activation energy (∼0.2 eV) determined from experiments on classical annealing. This and other experimental results on the temperature dependence of the intensity and kinetics of the defect photoluminescence have been explained in terms of the “hydrogen glass” model by thermally induced generation of intrinsic defects in amorphous silicon. The results of the calculations are in good agreement with the experimental data on the defect photoluminescence that reflects the formation and annihilation of defects for short heating times under optical excitation.  相似文献   

18.
Forbidden resonant Raman scattering from screened longitudinal optical, LO, phonons has been observed in the back-reflection geometry from n-type EuTe at 2°K. The Raman shift increased with increasing excitation frequency but was always between the LO and TO phonon frequencies. This effect is explained in terms of a varying ‘effective’ carrier concentration as a function of laser penetration depth through the surface depletion layer in the situation of large phonon wave vector. Conduction band and lattice parameters have been calculated from infrared Reststrahlen and plasma edge measurements.  相似文献   

19.
Raman scattering (including nonresonant, resonant, and surface enhanced scattering) of light by optical and surface phonons of ZnO nanocrystals and nanorods has been investigated. It has been found that the nonresonant and resonant Raman scattering spectra of the nanostructures exhibit typical vibrational modes, E 2(high) and A 1(LO), respectively, which are allowed by the selection rules. The deposition of silver nanoclusters on the surface of nanostructures leads either to an abrupt increase in the intensity (by a factor of 103) of Raman scattering of light by surface optical phonons or to the appearance of new surface modes, which indicates the observation of the phenomenon of surface enhanced Raman light scattering. It has been demonstrated that the frequencies of surface optical phonon modes of the studied nanostructures are in good agreement with the theoretical values obtained from calculations performed within the effective dielectric function model.  相似文献   

20.
碳化硅薄膜脉冲激光晶化特性研究   总被引:2,自引:0,他引:2       下载免费PDF全文
于威  何杰  孙运涛  朱海丰  韩理  傅广生 《物理学报》2004,53(6):1930-1934
采用XeCl准分子激光对非晶碳化硅(a-SiC)薄膜的脉冲激光晶化特性进行了研究.通过原子力显微镜(AFM)和Raman光谱技术对退火前后薄膜样品的形貌、结构及物相特性进行了分析.结果表明,选用合适的激光能量采用激光退火技术能够实现a-SiC薄膜的纳米晶化.退火薄膜中的纳米颗粒大小随着激光能量密度的增加而增大;Raman谱分析结果显示了退火后的薄膜的晶态结构特性并给出了伴随退火过程存在的物相分凝现象.根据以上结果并结合激光退火特性,对a-SiC的脉冲激光晶化机理进行了讨论. 关键词: 激光退火 晶化 碳化硅  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号