首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The 152Sm0.37Sr0.63MnO3 manganite is investigated using neutron diffraction. The parameters of the crystal and magnetic structures of the manganite are determined. The diffraction data are compared with the transport and magnetic characteristics of this compound. A comparison is performed between the 152Sm0.37Sr0.63MnO3 and 152Sm0.45Sr0.55MnO3 manganites. Although these compounds differ insignificantly in the strontium doping level, are homogeneous antiferromagnets, and do not exhibit a colossal negative magnetoresistance, they have different crystal symmetries (tetragonal I4/mcm and orthorhombic Pnma), differ in the type of spin ordering (C-type antiferromagnetic and A-type antiferromagnetic ordering), are characterized by different orbital polarizations (\(d_{3z^2 - r^2 } \) and \(d_{x^2 - y^2 } \)), and possess one-and two-dimensional magnetic and transport properties, respectively. The critical concentration range in which samarium strontium manganites undergo a concentration structural transition from the orthorhombic to tetragonal crystal symmetry with a change in the type of orbital and magnetic order is revealed.  相似文献   

2.
The magnetic structures that form in La1–xRxMn2Si2 (R = Sm, Tb) layered compounds with various concentrations x have been determined by magnetic neutron diffraction and magnetic measurements, and the magnetic phase diagrams have been built. It is shown that the formation of the magnetic structures is dependent not only on exchange interactions, but also on the type of the magnetic anisotropy of a rare-earth atom. It is found that, in La1–xTbxMn2Si2 compounds with 0.2 < x < 0.5, the competition of the Tb–Mn and Mn–Mn interlayer exchange interactions and the existence of a strong uniaxial magnetic anisotropy in the Mn and Tb sublattices leads to the frustrated magnetic state and prevents the formation of the long-range magnetic order in the Tb sublattice.  相似文献   

3.
The effect of structural defects in cobalt and oxygen sublattices with the constant average oxidation level 3+ of all cobalt ions on the magnetic properties of the EuBaCo1.90O5.36 single crystal has been studied. The magnetic properties of the single crystal and the polycrystalline sample of the corresponding composition are compared in the range T = 200–650 K. The results show that the cobalt-deficient EuBaCo2–xO5.5–δ samples demonstrate a three-dimensional XY ferromagnetic ordering of magnetic sublattices. The values of the effective magnetic moment at T > 480 K indicate the existence of the IS and HS states of Co3+ ions. The large difference of values of μeff of the EuBaCo1.90O5.36 single crystal and polycrystal can be due to that the magnetic ion spins lie in plane ab. The magnetic field directed along plane ab substantially influences the magnetic ordering at T < 300 K.  相似文献   

4.
Spin transitions of cobalt ions in LaCoO3 single crystals have been studied by the method of X-ray magnetic circular dichroism (XMCD) at the K- and L2,3-edges of Co3+ ions. The orbital momentum of cobalt ions obtained for the K-edge at the 3d level in the region of the spin transition in the temperature range from 25 to 120 K increases by a factor of approximately 1.6, whereas the slope of the magnetization curve value in the same temperature range and magnetic field increases by a factor of more than 10. XMCD experiments at the cobalt L2,3-edges demonstrate gradual growth of the ratio of the orbital momentum to the spin one L/S from 0.48 to 0.53 in the temperature range from 60 K to 120 K.  相似文献   

5.
The temperature and magnetic-field dependences of the heat capacity, thermal conductivity, thermopower, and electrical resistivity of the Sm0.55Sr0.45MnO3.02 ceramic material are studied in the temperature range 77–300 K and in magnetic fields up to 26 kOe. It is revealed that the quantities under investigation exhibit anomalous behavior due to a magnetic phase transition at the Curie temperature TC. An increase in the magnetic field strength H leads to an increase in the Curie temperature TC and a jump in the heat capacity ΔCp at TC. The temperature dependences of the measured quantities are characterized by hystereses that are considerably suppressed in a magnetic field of 26 kOe and depend neither on the thermocycling range nor on the rate of change in the temperature. The thermal conductivity K at temperatures above TC shows unusual behavior for crystalline solids (dK/dT>0) and, upon the transition to a ferromagnetic state, drastically increases as a result of a decrease in the phonon scattering by Jahn-Teller distortions. It is demonstrated that the hystereses of the studied properties of the Sm0.55Sr0.45MnO3.02 manganite are caused by a jumpwise change in the critical temperature due to variations in the lattice parameters upon the magnetic phase transition.  相似文献   

6.
The Ru-Ru spin-singlet formation in La2 ? x L n x RuO5 (Ln = Pr, Nd, Sm, Gd, Dy) was investigated by measurements of the specific heat and magnetic susceptibility. After subtraction of the lattice contribution from the specific heat (C p ), similar excess entropy values were obtained for all compounds. These entropies can be explained by the formation of antiferromagnetic Ru-spin dimers at low temperatures and provide a lower estimate for the intradimer exchange strength. Pronounced changes in the transition temperatures and a broadening of the corresponding peak in C p were observed. These changes depend on the rare-earth element and are due to local structural changes and heterogeneities caused by the substitution. The magnetic susceptibilities can be described by the sum of a rare-earth paramagnetic moment and the susceptibility of the unsubstituted La2RuO5. Density functional theory (DFT) calculations were performed for various compounds to investigate the origin of the magnetic transition and the relationship between structural changes and the spin-dimerization temperature. The combination of the present results with previous structural investigations supports the model of a spin-pairing of the Ru moments which occurs as a reason of the structural phase transition in La2 ? x L n x RuO5.  相似文献   

7.
The temperature dependences of the intense magnetocaloric effect ΔT AD(T, H) and the heat capacity C p (T) of the (La0.4Eu0.6)0.7Pb0.3MnO3 manganite are directly measured using adiabatic calorimetry. The experimental dependences ΔT AD(T) are in satisfactory agreement with those calculated from the data on the behavior of the magnetization. The factors responsible for the absence of an anomaly in the experimental temperature dependence of the heat capacity C p (T) in the range of the magnetic phase transition are discussed.  相似文献   

8.
We report a quantitative investigation of the magnetic field-temperature phase diagram by taking into account a simple phenomenological model arising out of the interplay of kinetic arrest and thermodynamic transitions in a magnetic glass Pr0.5Ca0.5Mn0.975Al0.025O3, through magnetization measurements. Such studies are necessary as kinetic arrest plays an important role in the formation of “magnetic glasses”, which has been observed in systems undergoing first order magnetic phase transitions. It has been shown that disorder in a system results in the formation kinetic arrest (H K ,T K ) band, like supercooling (H *,T *) and superheating (H **,T **) band. Quantitative proofs are given to show that (H K ,T K ) band is anticorrelated with (H *,T *) and (H **,T **) bands, while the later two are correlated among themselves. Analysis of time dependence of magnetization at different temperatures is carried out to establish the fact that the kinetic arrested state is different from the supercooled state.  相似文献   

9.
The magnetic superconductorRu0.9Sr2YCu2.1O7.9 (Ru-1212Y) has beeninvestigated using neutron diffraction under variable temperature and magnetic field. Withthe complementary information from magnetization measurements, we propose a magnetic phasediagram T-H for the Ru-1212 system. Uniaxialantiferromagnetic (AFM) order of 1.2μ B /Ruatoms with moments parallel to the c-axis is found below the magnetictransition temperature at  ~140 K in the absence of magnetic field. In addition,ferromagnetism (FM) in the ab-plane develops below  ~120 K, butis suppressed at lower temperature by superconducting correlations. Externally appliedmagnetic fields cause Ru-moments to realign from the c-axis to theab-plane, i.e. along the ?1,1,0? direction, and induce ferromagnetismin the plane with  ~1μ B at 60 kOe.These observations of the weak ferromagnetism suppressed by superconductivity and thefield-induced metamagnetic transition between AFM and FM demonstrate not only competingorders of superconductivity and magnetism, but also suggest a certain vortex dynamicscontributing to these magnetic transitions.  相似文献   

10.
The crystal structure and magnetic properties of the Bi1 ? x Ca x Fe1 ? x/2Nb x/2O3 system were studied. It is shown that, at x ≤ 0.15, the unit-cell symmetry of solid solutions is rhombohedral (space group R3c). Solid solutions with x ≥ 0.3 have an orthorhombic unit cell (space group Pbnm). The rhombohedral compositions are antiferromagnetic, while the orthorhombic compositions exhibit a small spontaneous magnetization due to Dzyaloshinski?-Moriya interaction. In CaFe0.5Nb0.5O3, the Fe3+ and Nb5+ ions are partially ordered and the unit cell is monoclinic (space group P21/n). In the concentration range 0.15 < x < 0.30, a two-phase state (R3c + Pbnm) is revealed.  相似文献   

11.
Single crystals of Pb2Fe2Ge2O9 have been grown. They were subjected to X-ray diffraction, magnetic, neutron diffraction, Mössbauer and spin resonance studies. It has been established that Pb2Fe2Ge2O9 is a weak ferromagnet with a Néel temperature T N = 46 K, and the exchange and spin-flop transition fields have been estimated. It has been demonstrated that the weak ferromagnetic moment is actually the result of the single-ion anisotropy axes for the magnetic moments of different magnetic sublattices being not collinear.  相似文献   

12.
We report on the magnetostriction of hexagonal HoMnO3 and YMnO3 single crystals in a wide range of applied magnetic fields (up to H = 14 T) at all possible combinations of the mutual orientations of magnetic field H and magnetostriction ΔL/L. The measured ΔL/L(H, T) data agree well with the magnetic phase diagram of the HoMnO3 single crystal reported previously by other authors. It is shown that the nonmonotonic behavior of magnetostriction of the HoMnO3 crystal is caused by the Ho3+ ion; the magnetic moment of the Mn3+ ion parallel to the hexagonal crystal axis. The anomalies established from the magnetostriction measurements of HoMnO3 are consistent with the phase diagram of these compounds. For the isostructural YMnO3 single crystal with a nonmagnetic rare-earth ion, the ΔL/L(H, T) dependences are described well by a conventional quadratic law in a wide temperature range (4–100 K). In addition, the magnetostriction effect is qualitatively estimated with regard to the effect of the crystal electric field on the holmium ion.  相似文献   

13.
This paper reports on a study of the magnetic, transport, magnetotransport, elastic, and magnetoelastic properties of the R0.55Sr0.45MnO3 ceramics (R=Sm, Eu0.40Nd0.15, Tb0.25Nd0.30) with the same carrier concentration and identical tolerance factor but which differ in the cation disorder parameter σ2. It was found that the Curie temperature TC decreases linearly with increasing σ2. An increase in σ2 results in an increase in the maximum electrical resistivity and an increased jump in the temperature dependence of linear thermal expansion near TC, as well as in a decrease in magnetoresistance and magnetostriction. For T>TC, one observes an abrupt increase in magnetostriction, magnetization, and magnetoresistance in a critical FIeld HC1 which grows with increasing temperature. The value of HC1 determined at fixed T/TC decreases with increasing σ2.  相似文献   

14.
The spin and lattice dynamics of the R2CuO4 quasi-2D antiferromagnetic crystals (R=Pr, Nd, Sm, Eu, Gd) were studied in the millimeter-range electromagnetic wave band. Strong variations of the absorption coefficient were observed to occur at temperatures TT0. Absorption lines of electrical nature due to lattice dynamics were also revealed near the T0 temperatures. The observed anomalies are assumed to originate from phase transitions at TT0, which entail changes in the structural and magnetic properties.  相似文献   

15.
The crystal and magnetic structures of La0.75Ca0.25MnO3 manganite are studied under high pressures up to 4.5 GPa in the temperature range 12–300 K by the neutron diffraction method. At normal pressure and temperature T C = 240 K, a ferromagnetic state is formed in La0.75Ca0.25MnO3. At high pressures P ≥ 1.5 GPa and at temperatures T < T N ≈ 150 K, a new A-type antiferromagnetic state appears. A further increase in pressure leads to an increase in the volume fraction of the antiferromagnetic phase, which coexists with the initial ferromagnetic phase. The effect of high pressure causes a considerable increase in T C with the slope dT C /dP ≈ 12 K/GPa. Calculations performed in the framework of the double exchange model with allowance for the electron-phonon interaction make it possible to explain this pressure dependence of T C on the basis of experimental data.  相似文献   

16.
The ability of a femtosecond laser pulse to manipulate and reverse the magnetization in a ferrimagnetic Gd24Fe66.5Co9.5 thin film was studied experimentally as a function of temperature. For a fixed energy of the laser pulse, the dynamics of magnetization showed different behavior depending on whether the sample temperature was below or above the magnetization compensation point (T M ). The conditions for full ultrafast demagnetization and magnetization reversal were easily achieved below T M , while the same laser excitation caused just 50% demagnetization above T M . This interesting change in magnetization dynamics is qualitatively explained in terms of effective changes in the magnitudes of magnetizations of atomic sublattices.  相似文献   

17.
Anisotropy of the magnetic properties of Sm0.55Sr0.45MnO3 single crystals has been studied. A significant increase in the antiferromagnetic component of magnetization in the case of orientation of an external magnetic field H close to the c axis has been found. Magnetization for a field lying in the ab plane seems typical of a ferromagnet. Anisotropy of susceptibility reaches 2.2 in weak fields and nearly vanishes at H > 1 T.  相似文献   

18.
The polarized spectra of absorption and magnetic circular dichroism in a TmAl3(BO3)4 single crystal are studied in the region of 3 H 63 F 4, 3 H 63 F 3, and 3 H 63 F 2 electronic transitions in the Tm3+ ion. The structure of the spectra is interpreted qualitatively. It is shown that the magnetic circular dichroism of the 3 H 63 F 4 transition is determined by the contribution from the splitting of the ground state, whereas the magnetic circular dichroism of the 3 H 63 F 3 transition is governed by the contribution from the splitting of an excited state in a trigonal crystal field.  相似文献   

19.
The unit cell parameters a, b, and c of [N(CH3)4]2ZnCl4 have been measured by x-ray diffraction in the temperature range 80–293 K. Temperature dependences of the thermal expansion coefficients αa, αb, and αc along the principal crystallographic axes and of the unit cell thermal expansion coefficient αV were determined. It is shown that the a=f(T), b=f(T), and c=f(T) curves exhibit anomalies in the form of jumps at phase transition temperatures T1=161 K and T2=181 K and that the phase transition occurring at T3=276 K manifests itself in the a=f(T) and b=f(T) curves as a break. A slight anisotropy in the coefficient of thermal expansion of the crystal was revealed. The phase transitions occurring at T1=161 K and T2=181 K in [N(CH3)4]2ZnCl4 were established to be first-order.  相似文献   

20.
Magnetization M(H,T) in magnetic fields H up to 90 kOe and at temperatures 2 K ≤ T < T c (where Tc is the superconducting transition temperature), along with magnetic susceptibility χ(T) in the normal state T c < T < 400 K for optimally oxygen-doped samples of YBa2Cu3O6.92 with varying degrees of defects in the crystal structure, are studied to determine the influence of structural inhomogeneity on the electron systems characteristics of cuprate superconductors. It is shown that the existence of structural inhomogeneity of samples leads to the manifestation of peculiarities appropriate to pseudogap regime in their properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号