首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structural features of the 1H‐imidazo[4,5‐c]pyridine (ICPY) tautomers and homodimers of the most stable tautomers have been studied by quantum chemical methods. FTIR and Raman spectra of the ICPY were recorded in the range of 4000–60 cm?1 and 3500–5 cm?1. The predominant tautomer among four possible isomers of ICPY were determined. The optimized geometries and vibrational frequencies of possible ICPY tautomers and dimers were computed by B3LYP/DFT method with 6‐311++G(d,p) and 6‐31G(d) basis sets. All vibrational frequencies assigned in detail with the help of total energy distribution (TED) and isotopic shifts. ICPY dimeric forms were also characterized according to their hydrogen bonding interactions, and it has been found that the most stable ICPY homodimer establishes moderate strong N ? H …N type hydrogen bond. 1H NMR, 13C NMR, and 15N NMR properties have been calculated for all tautomeric forms using the gauge independent atomic orbital (GIAO) method. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

2.
We report the results of detailed experimental and theoretical studies on the molecular structure and vibrational spectra of metal(II) halide complexes of 1,3-bis(4-pyridyl)propane [M(N2C13H14)X2, where M represents Zn or Hg, and X represents Cl, Br, or I]. The FT–infrared spectra (FT-IR) and FT-Raman spectra of the metal complexes of the 1,3-bis(4-pyridyl)propane molecule in the powder form were recorded between the 400–4000 and 5–3500 cm?1 regions, respectively. The molecular geometry and vibrational frequencies of the metal complexes of 1,3-bis(4-pyridyl)propane in the ground state were calculated using density functional theory (B3LYP functional) with LANL2DZ and SDD as basis sets. The total energy distributions (TED) among the symmetry coordinates of the normal modes were computed for the low-energy structure of the molecules. Complete vibrational assignments based on the calculated TED values are given.  相似文献   

3.
Preparations, crystal structures, electronic and CD spectra are reported for new chiral Schiff base complexes, bis(N-R-1-naphthylethyl-3,5-dichlorosalicydenaminato)nickel(II), copper(II), and zinc(II). Nickel(II) and copper(II) complexes adopt a square planar trans-[MN2O2] coordination geometry with Δ(R,R) configuration. While zinc(II) complex adopts a compressed tetrahedral trans-[MN2O2] one with Δ(R,R) configuration and exhibits an emission band around 21 000 cm−1 (λex = 27 000 cm−1). Absorption and CD spectra were recorded in N,N′-dimethylformamide, acetone, methanol, chloroform, and toluene solutions to discuss relationships between spectral shifts of d–d and π–π bands by structural changes of the complexes and physical properties of the solvents. Moreover, we have attempted to investigate conformational changes of the complexes induced by photoisomerization of azobenzene, 4-hydroxyazobenzene, or 4-aminoazobenzene, in various solutions under different conditions. Weak intermolecular interactions between complexes and azobenzenes are important for the phenomenon by conformational changes of bulky π-conjugated moieties of the ligands.  相似文献   

4.
Summary Reaction of 1,3-thiazolidine-2-thione and copper(II) chloride and bromide in MeOH yields CuL3X complexes. These react with an excess of copper(II) halide to give CuL2X complexes. From their i.r. spectra, all the complexes seem to be S-bonded to the metal. Thev(CuCl) vibration is identified at 236 cm–1.  相似文献   

5.
Vibrational spectra of N,N′-ethylene-Bis(salicylaldiminaates) and N,N′-ethylene-Bis(acetylacetoniminates) of nickel (II), copper (II), and zinc (II) are studied experimentally (IR spectroscopy, 400–4000 cm−1) and theoretically (B3LYP), band assignment is given, and the distribution of potential energy of normal vibrations in internal coordinates is studied. Differences between vibrational spectra of the complexes are discussed. Thermodynamic functions of gas-phase complexes corresponding to temperatures of 298 and 800 K are calculated.  相似文献   

6.
The reaction of tetraaza[14]annulene and its complexes with nicotinoyl chloride hydrochloride and/or isonicotinoyl chloride hydrochloride produced the 7,16-dinicotinoylated and/or 7,16-diisonicotinoylated corresponding products in satisfactory yields. The mass spectra reveal the molecular ion peaks due to the 7,16-diacylated products. A strong ir band which is correlated with a C = 0 stretching mode is freshly observed in the 1635–1670 cm?1 region upon the acylation. The electronic spectra for the complexes hardly change upon the acylation, but those for the ligands change slightly. The olefinic proton signals at the 7- and 16-positions disappear on the acylation in 1H-nmr spectra and the substituted pyridine proton signals are newly observed. The proton nmr results are consistent with those of the carbon-13 nmr. The spin Hamiltonian parameters for the acylated copper(II) complexes are comparable with those for the copper(II) complex which is not acylated. The copper(II) complexes assume the square-planar coordinations with an unpaired electron in the dx2?y2 orbital.  相似文献   

7.
Zinc(II) complexes of 4-aminoantipyrine (AAP), [Zn(AAP)2X2] (X = Cl, I) and [Zn(AAP)(CN)2] · 2H2O were prepared and characterized by elemental analysis, IR and NMR (1H & 13C) spectroscopy. The crystal structure of [Zn(AAP)2Cl2] (1) was determined by X-ray crystallography. The structural analysis of 1 shows that the complex exists as a monomeric nonionic molecule with zinc atom bound to two AAP ligands and two chloride ions adopting a distorted tetrahedral geometry. In [Zn(AAP)2(CN)2] · 2H2O, the appearance of a band at 2162 cm–1 in IR and resonances around 142 ppm in the 13C NMR spectra indicated the binding of cyanide to zinc(II).  相似文献   

8.
The infrared spectra (700–150 cm?1) of twenty-six complexes of 2-aminomethylpyridine (amp) with first transition series metal(II) ions are discussed. The complexes include the tris(amp) complexes [M(amp)3]2+ the bis(amp) compounds M(amp)2X2 and the mono(amp) complexes M(amp)X2. Assignments of the NH2 rocking modes, v(M-NH2), v(M-py) and ligand modes are based on the effects of isotopic labelling of the amino group and the effects of substitution of the metal ion and halide. The structural implications of the spectra are discussed.  相似文献   

9.
The isomorphous title complexes, dichlorido[4‐(3,5‐dimethyl‐4H‐1,2,4‐triazol‐4‐yl)benzoic acid‐κN1]zinc(II) dihydrate, [ZnCl2(C11H11N3O2)2]·2H2O, and dibromido[4‐(3,5‐dimethyl‐4H‐1,2,4‐triazol‐4‐yl)benzoic acid‐κN1]zinc(II) dihydrate, [ZnBr2(C11H11N3O2)2]·2H2O, were synthesized and crystallized by slow evaporation of the solvent from a solution of the ligand and either zinc chloride or zinc bromide, respectively, in water/ethanol. The ZnII ions occupy twofold axes in the noncentrosymmetric orthorhombic space group Fdd2. The metal ion is approximately tetrahedrally coordinated by two monodentate triazole groups of the ligands and additionally by two halide ions. The water molecules incorporate the complexes into a three‐dimensional framework made up by hydrogen bonds. Furthermore, each complex possesses two hydrogen‐bond‐donor sites represented by the carboxy groups and two acceptor sites at the noncoordinating N atoms of the triazoles.  相似文献   

10.
A series of Cu(II), Co(II), and Ni(II) complexes of bis-(3,5-dimethyl-pyrazolyl-1-methyl)-(3-phosphanyl-propyl)-amine C15H26N5P (1), prepared from 3-aminopropylphosphine and 1-hydroxymethyl-3,5-dimethylpyrazole were characterized. The nature of bonding and the geometry of the complexes have been deduced from elemental analysis, infrared, electronic, 1H NMR, 31P NMR spectra, magnetic susceptibility, and conductivity measurements. The studies indicate octahedral geometry for nickel complex and square pyramidal geometry for copper and cobalt complexes. The EPR spectra of copper complex in acetonitrile at 300 K and 77 K were recorded. Biological activities of the ligand and metal complexes have been studied on Staphylococcus aureus, Escherichia coli, Aspergillus niger, and Aspergillus flavus by well-diffusion method. The zone of inhibition values were measured at 37°C for a period of 24 h. The electrochemical behavior of copper complexes was studied by cyclic voltammetry. Catalytic study indicates the copper complex has efficient catalytic activity in oxidation of amitriptyline.  相似文献   

11.
The infrared and Raman spectra of norbornadiene complexes of Pd, Pt, Rh and Fe have been studied. An assignment of the normal modes is given and the ligand vibrations in the complex are compared with those for “free” norbornadiene. The ν(CC) stretching frequency of coordinated norbornadiene is from 1575 cm?1 to over 1400 cm?1.The strength of the metal—ligand bond increases in the series Pd < Pt < Rh and for halogen complexes in the series chloride < bromide < iodide. ESCA spectroscopy data obtained are in agreement with these conclusions.  相似文献   

12.
Binuclear cobalt(II), nickel(II), copper(II) and zinc(II) complexes of general composition [M2L1-2(μ-Cl)Cl2] · nH2O with the Schiff-base ligands (where L1H and L2H are the potential pentadentate ligands derived by condensing 2,6-diformyl-4-methylphenol with 4-amino-3-antipyrine and 2-hydroxy-3-hydrazinoquinoxiline, respectively) have been synthesized and characterized. Analytical and spectral studies support the above formulation. 1H-NMR and IR spectra of the complexes suggest they have an endogenous phenoxide bridge, with chloride as the exogenous bridge atom. The electronic spectra of all the complexes are well characterized by broad d–d and a high intensity charge-transfer transitions. The complexes are chloro-bridged as evidenced by two intense far-IR bands centered around 270–280 cm−1. Magnetic susceptibility measurements show that complexes are antiferromagnetic in nature. The compounds show significant growth inhibitory activity against fungi Aspergillus niger and Candida albicans and moderate activity against bacteria Bacillus cirroflagellosus and Pseudomonas auresenosa.  相似文献   

13.
The procedure is based on reduction of W(VI) to W(V) by tin(II) chloride in 6 M hydrochloric acid, and extraction of the resultant thiocyanate complexes with a benzene solution of amidine. The complex coagulates and is dissolved in the benzene by addition of 1-pentanol. The maximum molar absorptivities of the complexes with 8 amidines in benzene/1-pentanol (9:1, v/v) are in the range 12 100–18 400 mol?1 cm?1. The simplest compound, N,N-diphenylbenzamidine gives the best sensitivity; the linear range covers 5–90 μg W in 10 ml of final solution; the detection limit is 2 ng W ml?1. The method is applied to alloy steels.  相似文献   

14.
The IR spectra (3500—150 cm?1) of the complexes [M(aniline)2,X2 (M = Co, Ni, Cu, Zn; X = Cl, Br), [Zn(aniline)2I2] are discussed. Assignments of the internal ligand vibrations are based on the band shifts which result from 15N-labelling of the amino group. The metal—ligand stretching frequencies, ν(M—N) and ν(M—X), are assigned on the basis of the band shifts which occur on 15N-labelling and metal ion and halogen substitution. Two bands within the range 350–450 cm?1 are assigned to ν(M—N) while the ν(M—X) bands occur within the range 170–320 cm?1. The effects of structure and coordination number on ν(M—N) and ν(M—X) are discussed. The spectra of two ethanol adducts, [M(aniline)2-(ethanol)2Cl2] (M = Co, Ni) compared with those of the unsolvated species [M(aniline)2-Cl2], exhibit a unique band near 480 cm?1 which is insensitive to 15N-labelling and is assigned to ν(M—O).  相似文献   

15.
We report the infrared, Raman, and surface‐enhanced Raman scattering (SERS) spectra of triruthenium dipyridylamido complexes and of diruthenium mixed nickel metal‐string complexes. From the results of analysis on the vibrational modes, we assigned their vibrational frequencies and structures. The infrared band at 323–326 cm?1 is assigned to the Ru3 asymmetric stretching mode for [Ru3(dpa)4Cl2]0–2+. In these complexes we observed no Raman band corresponding to the Ru3 symmetric stretching mode although this mode is expected to have substantial Raman intensity. There is no frequency shift in the Ru3 asymmetric stretching modes for the complexes with varied oxidational states. No splitting in Raman spectra for the pyridyl breathing line indicates similar bonding environment for both pyridyls in dpa , thus a delocalized structure in the [Ru3]6–8+ unit is proposed. For Ru3(dpa)4(CN)2 complex series, we assign the infrared band at 302 cm?1 to the Ru3 asymmetric stretching mode and the weak Raman line at 285 cm?1 to the Ru3 symmetric stretching. Coordination to the strong axial ligand CN weakens the Ru‐Ru bonding. For the diruthenium nickel complex [Ru2Ni(dpa)4Cl2]0–1+, the diruthenium stretching mode νRu‐Ru is assigned to the intense band at 327 and 333 cm?1 in the Raman spectra for the neutral and oxidized forms, respectively. This implies a strong Ru‐Ru metal‐metal bonding.  相似文献   

16.
The potentiometric determination of zinc in chloride solutions with a coated wire electrode is described. The electroactive membrane contains the chlorozincate(II) salt of Aliquat 336S in poly (vinyl chloride). The electrode shows a useful response over the range 10-5 M–10-1 M zinc(II) in 3 M total chloride solutions in the pH range 1.5–6. The electrode is more responsive to the divalent tetrachlorozincate(II) than to the monovalent trichlorozincate(II) species. Applications in compleximetric titrations, and to the analysis of zinc oxide and zinc concentrates are reported.  相似文献   

17.
A series of Hofmann-type complexes containing two nicotinamide(nia) molecules attached to transition metal (II) (M) tetracyanonickelate frame with the formula: M(nia)2Ni(CN)4 (where M=Mn, Co, Ni, Cu or Cd) have been synthesised for the first time. Metal (II) halide complexes of nicotinamide complexes of the type [M(nia)2X2 (M=Cd, Ni, Cu, Hg; X=Cl, Br) and Ni(nia)4Br2 nia=nicotinamide] have also synthesised. The FTIR spectra are reported in the 4000-400 cm−1 region. Vibrational assignments are given for all the observed bands. The analysis of the vibrational spectra indicates that there are some structure-spectra correlations. A pronounced change was observed in the N-H stretching frequencies of the NH2 group. It is proposed that the amide NH2 group influence by the intramolecular hydrogen bond in the complexes. The coordination effect on the nicotinamide modes is analysed.  相似文献   

18.
亮氨酸与异亮氨酸的表面增强拉曼光谱   总被引:1,自引:0,他引:1  
报道了在蛋白质氨基酸中唯一一对异构体氨基酸——亮氨酸和异亮氨酸的FT-拉曼光谱和在银胶基底上的表面增强拉曼光谱(SERS). 归属了各振动、增强峰位并分析了异构体氨基酸分子内不同振动模式引起的拉曼位移及其在不同pH值下SERS的变化. 分子内不同的振动模式主要源于异构体氨基酸中一个甲基和主链的不同连接次序, 表现在拉曼光谱; 亮氨酸的甲基摇摆ρ(CH3)和非对称变形δas(CH3)在962, 945, 924和1454, 1408 cm-1; 异亮氨酸的ρ(CH3), δas(CH3)在922和1448, 1420, 1394 cm-1. C—CO, C—C, H—O…H及骨架晶格振动峰位基本对应. 饱和液态的拉曼光谱和SERS中, 各基团振动峰位的差异表现得更为明显. 初步推测了这对氨基酸异构体在银表面吸附状态的模型.  相似文献   

19.
Vibrational (IR and Raman) spectra for the metal-free phthalocyanine (H2Pc) have been comparatively investigated through experimental and theoretical methods. The frequencies and intensities were calculated at density functional B3LYP level using the 6-3 IG(d) basis set. The calculated vibrational frequencies were scaled by the factor 0.9613 and compared with the experimental result. In the IR spectrum, the characteristic IR band at 1008.cm^-1 is interpreted as C-N (pyrrole) in-plane bending vibration, in contrast with the traditional assigned N-H in-plane or out-of-plane bending vibration. The band at 874 cm^-1 is attributed to the isoindole deformation and aza vibration. In the Raman spectrum, the bands at 540, 566, 1310, 1340, 1425, 1448 and 1618 cm^-1 are also re-interpreted. Assignments of vibrational bands in the IR and Raman spectra are given based on density functional calculations for the first time. The present work provides valuable information to the traditional empirical assignment and will be helpful for further investigation of the vibration spectra of phthalocyanine analogues and their metal complexes.  相似文献   

20.
Three zinc iodide complexes based on phosphane ligands, namely diiodidobis(triphenylphosphane‐κP)zinc(II), [ZnI2(C18H15P2)2], ( 1 ), diiodidobis[tris(4‐methylphenyl)phosphane‐κP]zinc(II), [ZnI2(C21H21P2)2], ( 2 ), and [bis(diphenylphosphoryl)methane‐κ2O,O′]zinc(II) tetraiodidozinc(II), [Zn(C25H22O2P2)3][ZnI4], ( 3 ), have been synthesized and characterized. Single‐crystal X‐ray diffraction revealed that the structures of ( 1 ) and ( 2 ) are both mononuclear four‐coordinated ZnI2 complexes containing two monodentate phosphane ligands, respectively. Surprisingly, ( 2 ) spontaneously forms an acentric structure, suggesting it might be a potential second‐order NLO material. The crystal structure of complex ( 3 ) is composed of two parts, namely a [Zn(dppmO2)3]2+ cation [dppmO2 is bis(diphenylphosphoryl)methane] and a [ZnI4]2− anion. The UV–Vis absorption spectra, thermal stabilities and photoluminescence spectra of the title complexes have also been studied. Time‐dependent density functional theory (TD–DFT) calculations reveal that the low‐energy UV absorption and the corresponding light emission both result from halide‐ligand charge‐transfer (XLCT) excited states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号