首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The flow of a non-Newtonian fluid through a porous media in between two parallel plates at different temperatures is considered. The governing momentum equation of third-grade fluid with modified Darcy’s law and energy equation have been derived. Approximate analytical solutions of momentum and energy equations are obtained by using perturbation techniques. Constant viscosity, Reynold’s model viscosity, and Vogel’s model viscosity cases are treated separately. The criteria for validity of approximate solutions are derived. A numerical residual error analysis is performed for the solutions. Within the validity range, analytical and numerical solutions are in good agreement.  相似文献   

2.
Hayat  Tasawar  Khan  Masood 《Nonlinear dynamics》2005,42(4):395-405
The flow of a second-grade fluid past a porous plate subject to either suction or blowing at the plate has been studied. A modified model of second-grade fluid that has shear-dependent viscosity and can predict the normal stress difference is used. The differential equations governing the flow are solved using homotopy analysis method (HAM). Expressions for the velocity have been constructed and discussed with the help of graphs. Analysis of the obtained results showed that the flow is appreciably influenced by the material and normal stress coefficient. Several results of interest are deduced as the particular cases of the presented analysis.  相似文献   

3.
The solution for the flow of a third grade fluid bounded by two parallel porous plates is given using homotopy analysis method (HAM). A comparison is made with the exact numerical solution for the various values of the physical parameters. It is found that a proper choice of the auxiliary parameter occurring in HAM solution gives very close results.  相似文献   

4.
We investigate the fully developed flow in a fluid-saturated porous medium channel with an electrically conducting fluid under the action of a parallel Lorentz force. The Lorentz force varies exponentially in the vertical direction due to low fluid electrical conductivity and the special arrangement of the magnetic and electric fields at the lower plate. Exact analytical solutions are derived for fluid velocity and the results are presented in figures. All these flows are new and are presented for the first time in the literature.  相似文献   

5.
This article will present a set of analytical equations for the calculation of early time temperature at the edge of a porous, finite layer experiencing linear flow of a slightly compressible fluid. The equations provide the full, transient temperature solution for the flow of slightly compressible fluids (i.e., liquids and, sometimes, gasses) into horizontal wells. The solution is essential for temperature transient analysis in smart wells—a monitoring approach of great potential, but in early development stage. The early time, analytical model solution provided in the paper will be tested against a rigorous numerical simulation model. The methods proposed here can be applied to a wide variety of well-completion types, flow conditions and system properties. This article will first discuss the problem of transient temperature analysis, the flow conditions and the assumptions required to sufficiently simplify the thermal model so that an analytical solution can be derived. The solution is derived for the temperature change generated by the Joule–Thomson fluid heating under the condition of 2D heat losses to the surrounding formation.  相似文献   

6.
A theoretical analysis of the Dean problem in heterogenous porous media is presented for the specific case of monotonic permeability variation in the vertical direction. The solutions are presented in terms of the curvature ratio η which is shown to affect the flow patterns. No multiple vortex solutions were noted for all values of the curvature ratio η.  相似文献   

7.
A study is made of steady two-dimensional seepage in a porous massif composed by a double-periodic system of white and black chequers of arbitrary conductivity. Rigorous matching of Darcy's flows in zones of different conductivity is accomplished. Using the methods of complex analysis, explicit formulae for specific discharge are derived. Stream lines, travel times, and effective conductivity are evaluated. Deflection of marked particles from the natural direction of imposed gradient and stretching of prescribed composition of these particles enables the elucidation of the phenomena of transversal and longitudinal dispersion. A model of pure advection is related with the classical one-dimensional vective dispersion equation by selection of dispersivity which minimizes the difference between the breakthrough curves calculated from the two models.  相似文献   

8.
The diffuse-interface (DI) model for the two-phase flow of a one-component fluid in a porous medium has been presented by Papatzacos [2002, Transport Porous Media 49, 139–174] and by Papatzacos and Skjæveland [2004, SPE J. (March 2004), 47–56]. Its main characteristics are: (i) a unified treatment of two phases as manifestations of one fluid with a van der Waals type equation of state, (ii) the inclusion of wetting, and (iii) the absence of relative permeabilities. The present paper completes the presentation by including the implementation of wetting in the general case of a mixed-wet rock. As a result of this implementation, some statements are made about capillary pressure, confirming similar statements by Hassanizadeh and Gray [1993, Water Resour. Res. 29, 3389–3405]. As an application of the model, we show that relative permeabilities depend on the spatial derivatives of the saturation.  相似文献   

9.
The problem of the dispersed particulate-fluid two-phase flow in a channel with permeable walls under the effect of the Beavers and Joseph slip boundary condition is concerned in this paper. The analytical solution has been derived for the longitude pressure difference, stream functions, and the velocity distribution with the perturbation method based on a small width to length ratio of the channel. The graphical results for pressure, velocity, and stream function are presented and the effects of geometrical coefficients, the slip parameter and the volume fraction density on the pressure variation, the streamline structure and the velocity distribution are evaluated numerically and discussed. It is shown that the sinusoidal channel, accompanied by a higher friction factor, has higher pressure drop than that of the parallel-plate channel under fully developed flow conditions due to the wall-induced curvature effect. The increment of the channel’s width to the length ratio will remarkably increase the flow rate because of the enlargement of the flow area in the channel. At low Reynolds number ranging from 0 to 65, the fluids move forward smoothly following the shape of the channel. Moreover, the slip boundary condition will notably increase the fluid velocity and the decrease of the slip parameter leads to the increment of the velocity magnitude across the channel. The fluid-phase axial velocity decreases with the increment of the volume fraction density.  相似文献   

10.
A regular perturbation technique is employed to approximate the solution for fluid infiltration from a circular opening into an unsaturated medium. Introducing two empirical constitutive relations and relating the permeability k and water content with pore fluid pressure p, a nonlinear diffusion equation in terms of pore pressure is established. After rearranging the nonlinear diffusion equation, a parameter perturbation on is performed and an approximate solution with an error of is obtained, which correlate to a condition in which = . This approximate solution is verified by a finite difference solution and compared also with a linear solution in which the diffusivity is constant. It is shown that the perturbation solution with terms up to and including first-order can give a reasonably accurate solution for the parameter range for p 0 selected in this paper. The solution procedure provided in this paper also avoids the numerical problem normally encountered for a small time solution. The solution may also be used to overcome difficulties arising in solution procedure by the similarity transformation (Boltzmann), commonly conducted on diffusion equation, which cannot be applied for a finite wellbore problem.  相似文献   

11.
Effects of porous medium have been investigated on the steady flow of a third grade fluid between two stationary porous plates. The continuity and momentum equations along with modified Darcy??s law are used for the development of mathematical problem. The governing nonlinear problem is solved by a homotopy analysis method. The dimensionless velocity and shear stresses at the plates are analyzed.  相似文献   

12.
In this paper, we solve the unsteady mixed convection flow near the stagnation point on a heated vertical flat plate embedded in a Darcian fluid-saturated porous medium by means of an analytic technique, namely the Homotopy Analysis Method. Different from previous perturbation results, our analytic series solutions are accurate and uniformly valid for all dimensionless times and for all possible values of mixed convection parameter, and besides agree well with numerical results. This provides us with a new analytic approach to investigate related unsteady problems.  相似文献   

13.
Flow in channels bounded by wavy or corrugated walls is of interest in both technological and geological contexts. This paper presents an analytical solution for the steady Darcy flow of an incompressible fluid through a homogeneous, isotropic porous medium filling a channel bounded by symmetric wavy walls. This packed channel may represent an idealized packed fracture, a situation which is of interest as a potential pathway for the leakage of carbon dioxide from a geological sequestration site. The channel walls change from parallel planes, to small amplitude sine waves, to large amplitude nonsinusoidal waves as certain parameters are increased. The direction of gravity is arbitrary. A plot of piezometric head against distance in the direction of mean flow changes from a straight line for parallel planes to a series of steeply sloping sections in the reaches of small aperture alternating with nearly constant sections in the large aperture bulges. Expressions are given for the stream function, specific discharge, piezometric head, and pressure.  相似文献   

14.
Fully developed laminar forced convection inside a semi-circular channel filled with a Brinkman-Darcy porous medium is studied. Analytical solutions for flow and constant flux heat transfer are found using a mixture of Cartesian and cylindrical coordinates. The problem depends on a parameter s, which is proportional to the inverse square of the Darcy number. Velocity boundary layers exist when s is large. Both friction factor-Reynolds number product and Nusselt number are determined. Closed form expressions for the clear fluid () limit are found. Rare analytical solutions not only describe fundamental channel flows, but also serve as a check for more complicated numerical solutions.  相似文献   

15.
Vachagina  E. K.  Kadyirov  A. I. 《Fluid Dynamics》2022,57(2):135-145
Fluid Dynamics - The parametric solution to the problem of flow of multimode viscoelastic fluids with the Giesekus and Phan-Thien–Tanner models in a circular pipe is given in the case of...  相似文献   

16.
17.
An analytical investigation for a two-dimensional steady, viscous, and incompressible flow past a permeable sphere embedded in another porous medium is presented using the Brinkman model, assuming a uniform shear flow far away from the sphere. Semi-analytical solutions of the problem are derived and relevant quantities such as velocities and shearing stresses on the surface of the sphere are obtained. The streamlines inside and outside the sphere and the radial velocity are shown in several graphs for different values of the porous parameters \({\sigma _1 =(\mu /\tilde {\mu }) (a/\sqrt{K_1 })}\) and \({\sigma _2 =(\mu /\tilde {\mu }) (a/\sqrt{K_2 })}\) , where a is the radius of the sphere, μ is the dynamic viscosity of the fluid, \({\tilde {\mu }}\) is an effective or Brinkman viscosity, while K 1 and K 2 are the permeabilities of the two porous media. It is shown that the dimensionless shearing stress on the sphere is periodic in nature and its absolute value increases with an increase of both porous parameters σ 1 and σ 2.  相似文献   

18.
An analysis of fully developed combined free and forced convective flow in a fluid saturated porous medium channel bounded by two vertical parallel plates is presented. The flow is modeled using Brinkman equation model. The viscous and Darcy dissipation terms are also included in the energy equation. Three types of thermal boundary conditions such as isothermal–isothermal, isoflux–isothermal, and isothermal–isoflux for the left–right walls of the channel are considered. Analytical solutions for the governing ordinary differential equations are obtained by perturbation series method. In addition, closed form expressions for the Nusselt number at both the left and right channel walls are derived. Results have been presented for a wide range of governing parameters such as porous parameter, ratio of Grashof number and Reynolds number, viscosity ratio, width ratio, and conductivity ratio on velocity, and temperature fields. It is found that the presence of porous matrix in one of the region reduces the velocity and temperature.  相似文献   

19.
We consider the three-dimensional steady flow of certain classes of viscoelastic fluids in exterior domains with non-zero velocity prescribed at infinity. We show that the solution behaves near infinity similarly as the fundamental solution to the Oseen problem.  相似文献   

20.
The results of the study of the global behaviour of the convective flow of a binary mixture in a porous medium are presented. Bifurcation diagram, fixed points, periodic, chaotic solutions, stable and unstable manifolds, and basins of attraction have been calculated. Different behaviours (chaos, undecidable behaviour, etc.) have been found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号