首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
Kinetics and Catalysis - The mechanisms of reactions occurring during deoxygenation of esters on Pt and intermetallic Pt–Sn catalysts (hydrodeoxygenation (stepwise and concerted mechanisms);...  相似文献   

2.
The structures and thermal properties of Ag–Pt–Ni ternary nanoclusters varying with different compositions and sizes are studied by Monte Carlo and molecular dynamics simulations. It can be found that silver atoms tend to occupy the surface and platinum atoms favor the subsurface occupation, whereas the inner is occupied by nickel atoms due to the different surface energies and lattice parameters. In addition, there is a non-monotonous relationship between the melting points and compositions of Ag–Pt–Ni ternary nanoclusters according to molecular dynamics simulations. In addition, a linear decrease in melting point with \(N^{ - 1/3}\) is found for both monometallic and trimetallic clusters. This behavior is consistent with Pawlow’s law.  相似文献   

3.
4.
IntroductionTh0StruCtUrandreactiwhesof~honmCtalcarbid6clUStersarequltetwrtaninIhaIlareas0fchtalopsuchas~chtalStry,catalghs,combustionchendea,aStrDCheInistry,solidotcbeInistry,talsoonSinpetheseInaterialsexhibithighmdtingPOints,hardneSs,andmetallicconductity,thcyareveqbonddateSf0redtechnol0gicalaPPliCahonSinelectrnicandInaterialedenee.ThenatUreofthetrhahonwtnbondinintheSetwesisrathrintrigulng,andthllStheSe~esareinterestinboedentificaswellasooSIan~.Sincehllnow,aithOUghexpe~StUdiesha…  相似文献   

5.
1 INTRODUCTION The mutual interaction of molecules is related with many properties of the material, such as optics, electricity and magnetism. Moreover, chemical re- action and molecule recognition are related to the mutual interaction among molecules too. So, the weak interactions among molecules have attracted many chemists’ attentions. The law of mutual interaction of molecules has been widely used in many research fields, such as, studying the mechanism of organic reaction and de- si…  相似文献   

6.
Density functional theory B3LYP method and second-order Moller-Plesset perturbation theory MP2 method were employed to obtain the optimized geometries of the ground state and interaction energy for diazines and water complexes. The results show that the ground state complexes have strong hydrogen bonding interaction with -20.99, -16.73 and -15.31 kJ/mol after basis set superposition error and zero-point vibration energy correction for pyridazine-water, pyrimidine-water and pyrazine-water, respectively, and large red-shift for the symmetric H-O stretching vibration frequencies due to the formation of N…H-O hydrogen bond in the diazine-water complexes. The NBO analysis indicates that intermolecular charge transfer are 0.0316, 0.0255 and 0.0265 e respectively. In addition, the first singlet (n,n*) vertical excitation energy of the monomer and the hydrogen bonding complexes between diazines and water was investigated by time-dependent density functional theory.  相似文献   

7.
Ab initio SCF and Mφller-Plesset correlation correction methods in combination with counterpose procedure for BSSE correction have been applied to the theroetical studying of dimethylnitroamine and its dimers and trimers.Three optimized stable dimers and two trimers have been obtained.The corrected binding energies of the most stable dimer and trimer were predicted to be -24.68kJ/mol and -47.27kJ/mol,respectively at the MP2/6-31G^*//HF/6-31G^* level.The proportion of correlated interation energies to their total interaction energies for all clusters was at least 29.3 percent,and the BSSE of ΔE(MP2) was at least 10.0kJ/mol.Dispersion and/or electrostatic force were dominant in all clusters.There exist cooperative effects in both the chain and the cyclic trimers.The vibrational frequencies associated with N-O stretches or wags exhibit slight red shifts,but the modes associated with the motion of hydrogen atoms of the methyl group show somewhat blue shifts with respect to those of monomer.Thermodynamic properties of dimethylnitroamine and its clusters at different temperatures have been calculated on the basis of vibrational analyses.The changes of the Gibbs free energies for the aggregation from monomer to the most stable dimer and trimer were predicted to be 14.37kJ/mol and 30.40kJ/mol,respectively,at 1 atm and 298.15K.  相似文献   

8.
The hydrogen bonding interaction of formic acid-, formaldehyde-, formylfluoride-nitrosyl hydride complexes was investigated by the density functional theory (DFT) and ab inito method in conjunction with 6-311++G(2d,2p) basis set. The geometries, vibrational frequencies and interaction energies of the complexes were calculated by both standard and CP-corrected methods respectively. Moreover, G3B3 method was employed to estimate the interaction energies. There are C--H…O, N--H…O, N--H…F blue-shifted H-bonds and red-shifted O----H…O H-bond in the complexes. Electron density redistribution and rehybridization contribute to the N--H and C--H blue shifts. All geometric reorganizations contribute to the N--H blue shifts and partial geometric reorganizations contribute to the C--H blue shifts. The geometric reorganizations of the complex C except ZH(5)-O(4)-C(1) contribute to the O----H red shift. For the N--H blue shifts, the effect of r(N--O) variation on the N--H blue shifts is larger than that of ZH-N-O variation. Rehybridization plays a dominant role in the degree of N--H blue shifts, whereas the electron density redistribution contributes more to the degree of C--H blue shifts than the other effects do.  相似文献   

9.
The formation of hydrogen bonds between different types of molecules in binary alcohol mixtures (methyl alcohol, ethyl alcohol, ethylene glycol, propylene glycol and glycerol) have been investigated (each system at 21 mixture concentrations) by an analysis of their dielectric parameters. The static dielectric constant ε o, limiting high-frequency dielectric constant ε , excess dielectric parameters ε oE and ε E, effective Kirkwood correlation factor g eff, and corrective Kirkwood correlation factor g f of the binary alcohol mixtures were determined at 25 °C in order to explore hydrogen-bond interactions and the strength of molecular connectivities between unlike alcohol molecules and their dipole alignment. These results confirm that the different alcohol mixtures form hydrogen-bonded structures, which are strongly influenced by the numbers of hydroxyl groups and carbon atoms of the alcohol molecules and vary with the concentrations of the mixtures.  相似文献   

10.
ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 200 leading journals. To access a ChemInform Abstract, please click on HTML or PDF.  相似文献   

11.
12.
InteractionbetweenMetalinMetalloEnzymeandSmallBiologicalMolecules¥HuJie-Han;ShuZan-Yong;TaoLi-Mei;ChengGuo-Bao(DalianInstitut...  相似文献   

13.
14.

Abstract  

A new theoretical assessment of the Ni–Sn system has been performed by use of the CALPHAD method. Recent experimental results were significantly different from older experimental data and, therefore, a new reassessment of older theoretical work was necessary. The theoretical models for some intermetallic phases were changed to make them consistent with other binary systems in the thermodynamic database developed in the scope of COST action MP0602. Very good agreement was reached both with new experimental phase equlibrium data and older thermodynamic data.  相似文献   

15.
In this work, time-dependent density functional theory method was used to study the electronic transitions of hydrogen-bonded ethanol–water complexes Dimer-I, Dimer-II and Trimer. The intermolecular hydrogen bonds H1···O1 and O···H2 were demonstrated by the optimized geometric structures of the three hydrogen-bonded ethanol–water complexes. It is demonstrated that the S1-state electronic transitions for ethanol monomer and the hydrogen-bonded complex Dimer-I (through HB-I) should be of LE nature on the ethanol molecule, while those of complexes Dimer-II and Trimer should be of CT character from the hydrogen-bonded water molecule (through HB-II) to the ethanol moiety. The different electronic transition types should be the reasons for the tiny redshift of the S1-state electronic energy for Dimer-I and the large blueshifts for Dimer-II and the Trimer compared with that of the ethanol monomer.  相似文献   

16.
1 INTRODUCTION In the latest ten years, the structure and function of water clusters have captured the interest of chemists. One of the most important study objects in water cluster is to describe the behavior of water so- lution quantitatively at molecule level, which will pave the way for the solving of some environmental and other scientific problems, such as the formation of acid rain and nucleation mechanism of little water drop. Besides, weak interaction in water clusters could be al…  相似文献   

17.
45 isomers of TinNm (n + m = 5, 6) clusters, including linear, some planar and some stero configurations, have been predicted by density functional theory method. For five-atom clusters Ti3N2 and Ti2N3, the most stable structures are trigonal bipyramid in D3h symmetry, and for TiaN cluster, the isomer with one nitrogen atom occupying the center of quasi-tetrahedron is the most stable. In the isomers of Ti4N2 and Ti3N3, the planar networks are more stable, but for Ti2N4, the six-membered ring configuration is the most favorable. Most linear structures can form weak-strong bonds alternately with higher energy. As regards to planar structures, the more Ti-N bonds are formed, the more stable they will be; for stero closed polyhedral isomers, their energies are lower.  相似文献   

18.
The advantages of berberine such as the anticancer1, antiinflammatory2 and no side effects of camptothecin1, have promoted the research in the mechanism of berberine with macrobiomolecules. In general, three different points of view have been presented on…  相似文献   

19.
A density-functional theory investigation on the interactions between C2H radical and small gold clusters Au n 0/? (n = 1–4) has been performed. The calculated results predict that C2H radical inclines to interact with small gold clusters Au n 0/? (n = 1–4) as an integrity in the most stable structures of C2HAu n 0/? (n = 1–4). The Au n 0/? (n = 1–4) clusters retain their structural integrity as units in the ground states of C2HAu n 0/? (n = 1–4). The stretching vibrational frequencies of C≡C and C–H in the ground states of C2HAu n ? (n = 1–4) are decreased compared with those of the C2H radical due to the interaction between the Au n 0/? clusters and C2H radical. Smaller red shifts in the C≡C and C–H stretching bands of C2HAu n ? occur with an increase in n. The photoelectron spectra of the most stable structures of C2HAu n ? (n = 1–4) have been simulated to aid their future experimental characterizations. The current study provides further insight into the interaction between C2H radicals and gold clusters, which may lead to exploitation of the high activity of gold nanocrystals.  相似文献   

20.
The silicon–tin chemical bond has been investigated by a study of the SiSn diatomic molecule and a number of new polyatomic SixSny molecules. These species, formed in the vapor produced from silicon–tin mixtures at high temperature, were experimentally studied by using a Knudsen effusion mass spectrometric technique. The heteronuclear diatomic SiSn, together with the triatomic Si2Sn and SiSn2 and tetratomic Si3Sn, Si2Sn2, and SiSn3 species, were identified in the vapor and studied in the overall temperature range 1474–1944 K. The atomization energy of all the above molecules was determined for the first time (values in kJ mol?1): 233.0±7.8 (SiSn), 625.6±11.6 (Si2Sn), 550.2±10.7 (SiSn2), 1046.1±19.9 (Si3Sn), 955.2±26.8 (Si2Sn2), and 860.2±19.0 (SiSn3). In addition, a computational study of the ground and low‐lying excited electronic states of the newly identified molecules has been made. These electronic‐structure calculations were performed at the DFT‐B3LYP/cc‐pVTZ and CCSD(T)/cc‐pVTZ levels, and allowed the estimation of reliable molecular parameters and hence the thermal functions of the species under study. Computed atomization energies were also derived by taking into account spin–orbit corrections and extrapolation to the complete basis‐set limit. A comparison between experimental and theoretical results is presented. Revised values of (716.5±16) kJ mol?1 (Si3) and (440±20) kJ mol?1 (Sn3) are also proposed for the atomization energies of the Si3 and Sn3 molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号