首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 132 毫秒
1.
Classical molecular dynamics (MD) were performed to investigate the growth of ice from supercooled aqueous solutions of benzene, naphthalene, or phenanthrene. The main objective of this study is to explore the fate of those aromatic molecules after freezing of the supercooled aqueous solutions, i.e., if these molecules become trapped inside the ice lattice or if they are displaced to the QLL or to the interface with air. Ice growth from supercooled aqueous solutions of benzene, naphthalene, or phenanthrene result in the formation of quasi-liquid layers (QLLs) at the air/ice interface that are thicker than those observed when pure supercooled water freezes. Naphthalene and phenanthrene molecules in the supercooled aqueous solutions are displaced to the air/ice interface during the freezing process at both 270 and 260 K; no incorporation of these aromatics into the ice lattice is observed throughout the freezing process. Similar trends were observed during freezing of supercooled aqueous solutions of benzene at 270 K. In contrast, a fraction of the benzene molecules become trapped inside the ice lattice during the freezing process at 260 K, with the rest of the benzene molecules being displaced to the air/ice interface. These results suggest that the size of the aromatic molecule in the supercooled aqueous solution is an important parameter in determining whether these molecules become trapped inside the ice crystals. Finally, we also report potential of mean force (PMF) calculations aimed at studying the adsorption of gas-phase benzene and phenanthrene on atmospheric air/ice interfaces. Our PMF calculations indicate the presence of deep free energy minima for both benzene and phenanthrene at the air/ice interface, with these molecules adopting a flat orientation at the air/ice interface.  相似文献   

2.
3.
4.
The adsorption of gas-phase naphthalene and ozone molecules onto air/ice interfaces coated with different surfactant species (1-octanol, 1-hexadecanol, or 1-octanal) was investigated using classical molecular dynamics (MD) simulations. Naphthalene and ozone exhibit a strong preference to be adsorbed at the surfactant-coated air/ice interfaces, as opposed to either being dissolved into the bulk of the quasi-liquid layer (QLL) or being incorporated into the ice crystals. The QLL becomes thinner when the air/ice interface is coated with surfactant molecules. The adsorption of both naphthalene and ozone onto surfactant-coated air/ice interfaces is enhanced when compared to bare air/ice interface. Both naphthalene and ozone tend to stay dissolved in the surfactant layer and close to the QLL, rather than adsorbing on top of the surfactant molecules and close to the air region of our systems. Surfactants prefer to orient at a tilted angle with respect to the air/ice interface; the angular distribution and the most preferred angle vary depending on the hydrophilic end group, the length of the hydrophobic tail, and the surfactant concentration at the air/ice interface. Naphthalene prefers to have a flat orientation on the surfactant coated air/ice interface, except at high concentrations of 1-hexadecanol at the air/ice interface; the angular distribution of naphthalene depends on the specific surfactant and its concentration at the air/ice interface. The dynamics of naphthalene molecules at the surfactant-coated air/ice interface slow down as compared to those observed at bare air/ice interfaces. The presence of surfactants does not seem to affect the self-association of naphthalene molecules at the air/ice interface, at least for the specific surfactants and the range of concentrations considered in this study.  相似文献   

5.
The conformation of antifreeze glycoprotein (AFGP) molecules adsorbed at the ice/water interface was studied by attenuated total reflection (ATR)-FTIR spectroscopy. Measurements were carried out for AFGP/D2O solution films formed on the surface of an ATR prism as a function of temperature. Using the FTIR spectrum from the O-D stretching band of D2O molecules, we monitored the supercooled and frozen states of the film and measured the thickness of the quasi-liquid layer (QLL) at the ice/prism interfaces. The AFGP structure was determined for the liquid, supercooled, and frozen states of the solution film using the amide I band spectra. No noticeable differences in conformation were observed in the solution conformation from room temperature down to the 15 K supercooling studied, whereas the alpha-helical content of AFGP suddenly increased when the supercooled solution film froze at -15 degrees C. This change in conformation can increase the overall interaction between the AFGP molecules and ice surface and allow a stronger adsorption. In contrast, the alpha-helical content of AFGP in the frozen film gradually decreased with increasing temperature and finally returned to its solution-state level at the melting point of D2O ice. This gradual decrease in the alpha-helix content directly correlates with the measured increase in QLL thickness. Finally, we conclude that the differences in the alpha-helix signals between the frozen and supercooled states indicate the conformational change of AFGP molecules upon adsorption at the ice/water interface, emphasizing the importance of the structure-function relationship, even for this highly flexible antifreeze.  相似文献   

6.
Ice Ih has been studied by path-integral molecular dynamics simulations, using the effective q-TIP4P/F potential model for flexible water. This has allowed us to analyze finite-temperature quantum effects in this solid phase from 25 to 300 K at ambient pressure. Among these effects we find a negative thermal expansion of ice at low temperatures, which does not appear in classical molecular dynamics simulations. The compressibility derived from volume fluctuations gives results in line with experimental data. We have analyzed isotope effects in ice Ih by considering normal, heavy, and tritiated water. In particular, we studied the effect of changing the isotopic mass of hydrogen on the kinetic energy and atomic delocalization in the crystal as well as on structural properties such as interatomic distances and molar volume. For D(2)O ice Ih at 100 K we obtained a decrease in molar volume and intramolecular O-H distance of 0.6% and 0.4%, respectively, as compared to H(2)O ice.  相似文献   

7.
The dynamics of an excess electron in size-selected methanol clusters is studied via pump-probe spectroscopy with resolution of approximately 120 fs. Following excitation, the excess electron undergoes internal conversion back to the ground state with lifetimes of 260-175 fs in (CH3OH)n- (n=145-535) and 280-230 fs in (CD3OD)n- (n=210-390), decreasing with increasing cluster size. The clusters then undergo vibrational relaxation on the ground state on a time scale of 760+/-250 fs. The excited state lifetimes for (CH3OH)n- clusters extrapolate to a value of 157+/-25 fs in the limit of infinite cluster size.  相似文献   

8.
We have performed molecular dynamics simulations of liquid water at 298 and 258 K to investigate the effects of hydrogen-bond environment on various single-particle and pair dynamical properties of water molecules at ambient and supercooled conditions. The water molecules are modelled by the extended simple point charge (SPC/E) model. We first calculate the distribution of hydrogen-bond environment in liquid water at both temperatures and then investigate how the self-diffusion and orientational relaxation of a single water molecule and also the relative diffusion and relaxation of the hydrogen-bond of a water pair depend on the nature of the hydrogen-bond environment of the tagged molecules. We find that the various dynamical quantities depend significantly on the hydrogen-bond environment, especially at the supercooled temperature. The present study provides a molecular-level insight into the dynamics of liquid water under ambient and supercooled conditions.  相似文献   

9.
A series of quantum molecular dynamics simulations have been performed to investigate the energetic, structural, dynamic, and spectroscopic properties of methanol cluster anions, [(CH(3)OH)(n)](-), (n = 50-500). Consistent with the inference from photo-electron imaging experiments, we find two main localization modes of the excess electron in equilibrated methanol clusters at ~200 K. The two different localization patterns have strikingly different physical properties, consistent with experimental observations, and are manifest in comparable cluster sizes to those observed. Smaller clusters (n ≤ 128) tend to localize the electron in very weakly bound, diffuse electronic states on the surface of the cluster, while in larger ones the electron is stabilized in solvent cavities, in compact interior-bound states. The interior states exhibit properties that largely resemble and smoothly extrapolate to those simulated for a solvated electron in bulk methanol. The surface electronic states of methanol cluster anions are significantly more weakly bound than the surface states of the anionic water clusters. The key source of the difference is the lack of stabilizing free hydroxyl groups on a relaxed methanol cluster surface. We also provide a mechanistic picture that illustrates the essential role of the interactions of the excess electron with the hydroxyl groups in the dynamic process of the transition of the electron from surface-bound states to interior-bound states.  相似文献   

10.
Electron solvation in water clusters following charge transfer from iodide   总被引:1,自引:0,他引:1  
The dynamics following charge transfer to solvent from iodide to a water cluster are studied using time-resolved photoelectron imaging of I-(H2O)n and I-(D2O)n clusters with n< or =28. The results show spontaneous conversion, on a time scale of approximately 1 ps, from water cluster anions with surface-bound electrons to structures in which the excess electron is more strongly bound and possibly more internalized within the solvent network. The resulting dynamics provide valuable insight into the electron solvation dynamics in water clusters and the relative stabilities between recently observed isomers of water cluster anions.  相似文献   

11.
The evaporation rate of water molecules across three kinds of interfaces (air/water interface (1), air/surfactant solution interface (2), and air/water interface covered by insoluble monolayer (3)) was examined using a remodeled thermogravimetric balance. There was no difference in both the evaporation rate and the activation energy for the first two interfaces for three types of surfactant solutions below and above the critical micelle concentration (cmc). This means that the molecular surface area from the Gibbs surface excess has nothing to do with the evaporation rate. In the third case, the insoluble monolayer of 1-heptadecanol decreased the evaporation rate and increased the activation energy, indicating a clear difference between an insoluble monolayer and an adsorbed film of soluble surfactant. This difference was substantiated by BAM images, too. The images of three surfactant solution interfaces were similar to that of just the water surface, while distinct structures of molecular assemblies were observed for the insoluble monolayer. The concentration profile of water molecules in an air/liquid interfacial region was derived by Fix's second law. The profile indicates that a definite layer just beneath the air/liquid interface of the surfactant solution is made mostly of water molecules and that the layer thickness is a few times the root-mean-square displacement %@mt;sys@%%@rl;;@%2%@ital@%Dt%@rsf@%%@rlx@%%@mx@% of the water molecules. The thickness was found to be more than a few nanometers, as estimated from several relaxation times derived from the other kinetics than evaporation of amphiphilic molecules in aqueous systems and a maximum evaporation rate of purified water.  相似文献   

12.
We present evidence via molecular simulation that the supercooled fluid states of SPC/E water as well as the "repulsive" and "attractive" supercooled fluid states of a recently introduced model for colloids with short-ranged attractions are characterized by the same functional relationship between self-diffusivity and the pair correlation function. We discuss how this simple relationship connects to an earlier finding that the temperature dependency of a supercooled fluid's single-particle dynamics tracks that of its excess entropy (relative to ideal gas). The generality of this observed structure-property relationship is supported by its ability to successfully describe the nontrivial behaviors of these very different types of model systems.  相似文献   

13.
The molecular dynamics method is employed to study hydrates of methane (sI), and krypton hydrate (sII), as well as an ice nanocluster in a supercooled water shell. The main attention is focused on the local structure and the mechanical state of two-phase nanosized systems, which is described using the local pressure tensor. Analysis of the temperature dependence of the local pressure allows one to compare two possible mechanisms responsible for the anomalous stability of gas hydrates at ambient pressure. According to the first mechanism, the water shell plays the role of a barrier that prevents the gas from escaping from the hydrate core. The second mechanism implies that the water shell generates additional pressure, which transfers the hydrate to a thermodynamically stable state. Results of molecular dynamics simulation indicate that both mechanisms are simultaneously involved in the stabilization of the hydrate nanocluster.  相似文献   

14.
Dielectric relaxation spectra of two closely related glass formers, dipropylene glycol [H-(C3H6O)2-OH] and dipropylene glycol dimethyl ether [CH3-O-(C3H6O)2-CH3], were measured at ambient and elevated pressures in the supercooled and the glassy states are presented. Hydrogen bonds formed in dipropylene glycol are removed when its ends are replaced by two methyl groups to become dipropylene glycol dimethyl ether. In the process, the primary relaxation, the excess wing, and the resolved secondary relaxation of dipropylene glycol are all modified when the structure is transformed to become dipropylene glycol dimethyl ether. The modifications include the pressure and temperature dependences of these relaxation processes and their interrelations. Thus, by comparing the dielectric spectra of these two closely related glass formers at ambient and elevated pressures, the differences in the relaxation dynamics and properties in the presence and absence of hydrogen bonding are identified.  相似文献   

15.
We present approximate pseudopotential quantum-mechanical calculations of the excess electron states of equilibrated neutral water clusters sampled by classical molecular dynamics simulations. The internal energy of the clusters are representative of those present at temperatures of 200 and 300 K. Correlated electronic structure calculations are used to validate the pseudopotential for this purpose. We find that the neutral clusters support localized, bound excess electron ground states in about 50% of the configurations for the smallest cluster size studied (n = 20), and in almost all configurations for larger clusters (n > 66). The state is always exterior to the molecular frame, forming typically a diffuse surface state. Both cluster size and temperature dependence of energetic and structural properties of the clusters and the electron distribution are explored. We show that the stabilization of the electron is strongly correlated with the preexisting instantaneous dipole moment of the neutral clusters, and its ground state energy is reflected in the electronic radius. The findings are consistent with electron attachment via an initial surface state. The hypothetical spectral dynamics following such attachment is also discussed.  相似文献   

16.
Water cluster anions, comprising up to 20 molecules, are simulated at the second-order unrestricted Møller–Plesset perturbation theory level with 6-31++G** basis set augmented with a floating center of 8 s diffuse functions. Interface structures composed of two to four chainlike or cyclic subclusters found to be most stable among anions of the same molecular size are shown to serve as a reliable restricted model of the hydrated electron. The calculated values of the adiabatic electron affinity of neutral clusters and the vertical energies of electron detachment from anions fit in with n –1/3 dependences that provide the corresponding estimates of the bulk water or ice specimens. The radius of a circumsphere containing about 85% of the excess electron density is treated as an effective radius of the excess electron and found to approach 2.5 Å as the size of cluster increases to infinity.  相似文献   

17.
The ultrafast dynamics of HDO:D2O ice Ih at 180 K is studied by midinfrared ultrafast pump-probe spectroscopy. The vibrational relaxation of HDO:D2O ice is observed to proceed via an intermediate state, which has a blueshifted absorption spectrum. Polarization resolved measurements reveal that the intermediate state is part of the intramolecular relaxation pathway of the HDO molecule. In addition, slow dynamics on a time scale of the order of 10-100 ps is observed, related to thermally induced collective reorganizations of the ice lattice. The transient absorption line shape is analyzed within a Lippincott-Schroeder model for the OH-stretch potential. This analysis identifies the main mechanism behind the strong spectral broadening of the v(OH)=1-->2 transition.  相似文献   

18.
Excess electrons in polar media, such as water or ice, are screened by reorientation of the surrounding molecular dipoles. This process of electron solvation is of vital importance for various fields of physical chemistry and biology as, for instance, in electrochemistry or photosynthesis. Generation of such excess electrons in bulk water involves either photoionization of solvent molecules or doping with e.g. alkali atoms, involving possibly perturbing interactions of the system with the parent-cation. Such effects are avoided when using a surface science approach to electron solvation: in the case of polar adsorbate layers on metal surfaces, the substrate acts as an electron source from where photoexcited carriers are injected into the adlayer. Besides the investigation of electron solvation at such interfaces, this approach allows for the investigation of heterogeneous electron transfer, as the excited solvated electron population continuously decays back to the metal substrate. In this manner, electron transfer and solvation processes are intimately connected at any polar adsorbate-metal interface. In this tutorial review, we discuss recent experiments on the ultrafast dynamics of photoinduced electron transfer and solvation processes at amorphous ice-metal interfaces. Femtosecond time-resolved two-photon photoelectron spectroscopy is employed as a direct probe of the electron dynamics, which enables the analysis of all elementary processes: the charge injection across the interface, the subsequent electron localization and solvation, and the dynamics of electron transfer back to the substrate. Using surface science techniques to grow and characterize various well-defined ice structures, we gain detailed insight into the correlation between adsorbate structure and electron solvation dynamics, the location (bulk versus surface) of the solvation site, and the role of the electronic structure of the underlying metal substrate on the electron transfer rate.  相似文献   

19.
We performed molecular dynamics simulations of systems that consisted of the ice nucleation protein and the quasi-two-dimensional water cluster on it. The angle distributions, percolation probabilities, mean cluster sizes, cluster size distributions, and hydrogen bond relaxation times were analyzed. We concluded that the behavior of the water clusters on the ice nucleation protein was elaborately intertwined by the interaction between the ice nucleation protein and water, the interaction between the water molecules and the effect of temperature. The percolation probability and mean cluster size depended on the interactions and temperatures.  相似文献   

20.
Electronic relaxation dynamics of water cluster anions   总被引:1,自引:0,他引:1  
The electronic relaxation dynamics of water cluster anions, (H(2)O)(n)(-), have been studied with time-resolved photoelectron imaging. In this investigation, the excess electron was excited through the p<--s transition with an ultrafast laser pulse, with subsequent electronic evolution monitored by photodetachment. All excited-state lifetimes exhibit a significant isotope effect (tau(D)2(O)/tau(H)2(O) approximately 2). Additionally, marked dynamical differences are found for two classes of water cluster anions, isomers I and II, previously assigned as clusters with internally solvated and surface-bound electrons, respectively. Isomer I clusters with n > or = 25 decay exclusively by internal conversion, with relaxation times that extrapolate linearly with 1/n toward an internal conversion lifetime of 50 fs in bulk water. Smaller isomer I clusters (13 < or = n < or = 25) decay through a combination of excited-state autodetachment and internal conversion. The relaxation of isomer II clusters shows no significant size dependence over the range of n = 60-100, with autodetachment an important decay channel following excitation of these clusters. Photoelectron angular distributions (PADs) were measured for isomer I and isomer II clusters. The large differences in dynamical trends, relaxation mechanisms, and PADs between large isomer I and isomer II clusters are consistent with their assignment to very different electron binding motifs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号