首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The adsorption of 1,1‐diamino‐2,2‐dinitroethylene (FOX‐7) molecule on the Al(111) surface was investigated by the generalized gradient approximation (GGA) of density functional theory (DFT). The calculations employ a supercell (4×4×2) slab model and three‐dimensional periodic boundary conditions. The strong attractive forces between oxygen and aluminum atoms induce the N? O bond breaking of the FOX‐7. Subsequently, the dissociated oxygen atoms and radical fragment of FOX‐7 oxidize the Al surface. The largest adsorption energy is ?940.5 kJ/mol. Most of charge transfer is 3.31e from the Al surface to the fragment of FOX‐7 molecule. We also investigated the adsorption and decomposition mechanism of FOX‐7 molecule on the Al(111) surface. The activation energy for the dissociation steps of P2 con?guration is as large as 428.8 kJ/mol, while activation energies of other con?gurations are much smaller, in range of 2.4 to 147.7 kJ/mol.  相似文献   

2.
In this study, based on two model nitramine compounds hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and octahydro-1,3,5,7-tetranitro-1,3,5, 7-tetrazocine (HMX), two series of new energetic molecules were designed by replacing carbon atoms in the ring with different amounts of boron atoms, their structures and performances were investigated theoretically by the density functional theory method. The results showed that the boron replacement could affect the molecular shape and electronic structure of RDX and HMX greatly, and then would do harm to the main performance like the heat of formation, density, and sensitivity. However, the compound RDX-B2 is an exception; it was formed by replacing two boron atoms into the system of RDX and has the symmetric boat-like structure. Its oxygen balance (4.9%), density (1.91 g/cm3), detonation velocity (8.85 km/s), and detonation pressure (36.9 GPa) are all higher than RDX. Furthermore, RDX-B2 has shorter and stronger N NO2 bonds than RDX, making it possesses lower sensitivity (45 cm) and better thermal stability (the bond dissociation energy for the N NO2 bond is 204.7 kJ/mol) than RDX. Besides, RDX-B1 and HMX-B4 also have good overall performance; these three new molecules may be regarded as a new potential candidate for high energy density compounds.  相似文献   

3.
The molecular geometries and electronic structures of 2,4,6-tris(nitromethyl)-1,3,5-triazine isomers were investigated by the density functional method DFT/B3LYP/6-311++G** to elucidate the structural factors responsible for the stability of these systems. It was shown that a characteristic feature of the nitromethyl tautomer (1) of 2,4,6-tris (nitromethyl)-1,3,5-triazine consists in nonvalence interactions between an oxygen atom of nitro group and a carbon atom of triazine ring, which are probably due to Coulomb attraction between them. The tautomer with the 2,4,6-tris (nitromethylene)-hexahyrdo-1,3,5-triazine structure (2) is stabilized trough direct polar conjugation between the amino and nitro groups at the double bond. Structural strain of the molecule with the 2,4,6-tris(aci-nitromethyl)-1,3,5-triazine structure (3) is the reason for its thermodynamic instability. X-ray data indicate that the compound under study exists in the triazine tautomeric form 1 and the distances between oxygen atoms of nitro group and carbon atom of the triazine ring are shortened. NMR data suggest the existence of triazine in the nitromethyl form 1 in acetonitrile and acetone and a tautomeric equilibrium between the nitromethyl and nitromethylene forms in a more polar solvent (DMSO). The results obtained suggest a Coulomb-type stabilization of the 2,4,6-tris(nitromethyl)-1,3,5-triazine molecule in the gas phase, in the crystal, and in nonpolar solvents.  相似文献   

4.
Through the use of simultaneous thermogravimetry modulated beam mass spectrometry, optical microscopy, hot-stage time-lapsed microscopy, and scanning electron microscopy measurements, the physical and chemical processes that control the thermal decomposition of 1,3,5-trinitrohexahydro-s-triazine (RDX) below its melting point (160-189 degrees C) have been identified. Two gas-phase reactions of RDX are predominant during the early stages of an experiment. One involves the loss of HONO and HNO and leads to the formation of H2O, NO, NO2, and oxy-s-triazine (OST) or s-triazine. The other involves the reaction of NO with RDX to form NO2 and 1-nitroso-3,5-dinitrohexahydro-s-triazine (ONDNTA), which subsequently decomposes to form a set of products of which CH2O and N2O are the most abundant. Products from the gas-phase RDX decomposition reactions, such as ONDNTA, deposit on the surface of the RDX particles and lead to the development of a new set of reaction pathways that occur on the surface of the RDX particles. The initial surface reactions occur on surfaces of those RDX particles in the sample that can accumulate the greatest amount of products from the gas-phase reactions. Initial surface reactions are characterized by the formation of islands of reactivity on the RDX surface and lead to the development of an orange-colored nonvolatile residue (NVR) film on the surface of the RDX particles. The NVR film is most likely formed via the decomposition of ONDNTA on the surface of the RDX particles. The NVR film is a nonstoichiometric and dynamic material, which reacts directly with RDX and ONDNTA, and is composed of remnants from RDX and ONDNTA molecules that have reacted with the NVR. Reactions involving the NVR become dominant during the later stage of the decomposition process. The NVR reacts with RDX to form ONDNTA via abstraction of an oxygen atom from an NO2 group. ONDNTA may undergo rapid loss of N2 and NO2 with the remaining portion of the molecule being incorporated into the dynamic NVR. The dynamic NVR also decomposes and leads to the formation of H2O, CH2O, N2O, NH2CHO, (CH3)2NCHO, (CH3)2NNO, C2H2N2O, and (CH3)3N or CH3NCH2CH3. The competition between reaction of the dynamic NVR with RDX and its own thermal decomposition manifests itself in a rapid increase in the rate of evolution of the NVR decomposition products as the amount of RDX remaining in the sample nears depletion. The reactions between the NVR film and RDX on the surface of the RDX particles leads to a localized environment that creates a layer of molten RDX on the surface of the particles where reactions associated with the liquid-phase decomposition of RDX may occur. The combination of these reaction processes leads to an acceleration of the reaction rate in the later stage of the decomposition process and creates an apparent reaction rate behavior that has been referred to as autocatalytic in many previous studies of RDX decomposition. A reaction scheme summarizing the reaction pathways that contribute to the decomposition of RDX below its melting point is presented.  相似文献   

5.
The insensitive property of explosives containing pyridine is combined with the high energy of nitramine explosives,and the concept of new nitramine explosives containing pyridine is proposed,into which nitramine group with N N bonds is introduced as much as possible.Based on molecular structures of nitramine compounds containing pyridine,density functional theory(DFT) calculation method was applied to study designed molecules at B3LYP/6-31+G(d) level.The geometric and electronic structures,density,heats of formation(HOF),detonation performance and bond dissociation energies(BDE) were investigated and comparable to 1,3,5-trinitro-1,3,5-triazinane(RDX) and 1,3,5,7-tetranitro-1,3,5,7-tetrazocane(HMX).The simulation results reveal that molecules B and D perform similarly to traditionally used RDX.Molecule E outperform RDX,with performance that approach that of HMX and may be considered as potential candidate of high energy density compound(HEDC).These results provide basic information for molecular design of novel high energetic density compounds.  相似文献   

6.
Four novel cage compounds were designed by introducing –N(NO2)CH2–, –N(NO2)O–, –N(NO2)N(NO2)–, and –N=N– linkages into the RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) skeleton. Their molecular geometry, electronic structure, heat of formation, and detonation properties were systematically studied using density functional theory (DFT). In addition, the most stable dimers of the four compounds were constructed to further investigate their stability based on intermolecular interactions. It is found that the unconventional CH⋯O interactions would be the dominant driving force when the title compounds form crystals. Compared with the traditional explosives, the compounds with higher detonation properties and lower impact sensitivity will be considered as promising candidates for high energy density compounds. Our results indicate that our innovative design strategy is extremely useful for developing novel energetic compounds.  相似文献   

7.
Experimental and theoretical studies have proposed different initiation reactions for the decomposition of hexahydro‐1,3,5‐trinitro‐1,3,5‐triazine (RDX). Three primary reactions are considered to start RDX decomposition: homolytic N? N bond fission, HONO elimination, and concerted fission of C? N bonds. The focus of this article is to study the effect of external forces on the energy barrier and reaction energies of all three mechanisms. We used the Nudged Elastic Band method along with ab initio Density Functional Theory within the framework of a generalized force‐modified potential energy surface (G‐FMPES) to calculate the minimum energy paths at different compressive (corresponding to pressure between approximately 6 and 294 MPa) and expansive force values (between 10 and 264 pN). For all three reactions, the application of an expansive force increases the exothermicity and lowers the energy barriers to different extents, while a compressive force decreases the exothermicity and raises the energy barrier to different extents.  相似文献   

8.
We present the results of molecular dynamics simulations of crystalline hexahydro-1,3,5-trinitro-1,3,5-s-triazine (RDX) using the SRT-AMBER force field (P. M. Agrawal et al., J. Phys. Chem. B 2006, 110, 5721), which combines the rigid-molecule force field developed by Sorescu-Rice-Thompson (D. C. Sorescu, B. M. Rice, and D. L. Thompson, J. Phys. Chem. B 1997, 101, 798) with the intramolecular interactions obtained from the Generalized AMBER Force Field (Wang et al., J. Comput. Chem. 2004, 25, 1157). The calculated crystal density at room conditions is about 10% lower than the measured value, while the lattice parameters and thermodynamic melting point are within about 5% at ambient pressure. The chair and inverted chair conformation, bond lengths, and bond angles of the RDX molecule are accurately predicted; however, there are some inaccuracies in the calculated orientations of the NO2 groups. The SRT-AMBER force field predicts overall reasonable results, but modifications, probably in the torsional parameters, are needed for a more accurate force field.  相似文献   

9.
The adsorption of 2,4,6-trinitrotoluene (TNT) molecule on the Al(111) ultrathin film were investigated by the generalized gradient approximation (GGA) of density functional theory (DFT). The calculations employ a supercell (4 × 4 × 2) model and three-dimensional periodic boundary conditions. The strong attractive forces between oxygen and aluminum atoms induce the N–O bond breaking of the TNT. Subsequently, the dissociated oxygen atoms and radical fragment of TNT oxidize the Al ultrathin film. The N–O bond of the o-NO2 group is easier to rupture than that of the p-NO2 group after the adsorption of the TNT molecule on the Al(111). Except for the breaking of the N–O bonds of the nitro group, other bonds of TNT molecule do not dissociate. The largest adsorption energy is −747.3 kJ/mol. The most of charge transfer is 3.42 e from the Al(111) to the fragment of TNT molecule. The aluminum ultrathin film is readily oxidized by the radical fragment of TNT, which is initiated by the dissociated O atoms from the nitro group.  相似文献   

10.
The adsorption and decomposition of HMX and CL‐20 molecules on the Al(111) surface were investigated by the generalized gradient approximation of density functional theory. The calculations employed a supercell (6 × 6 × 3) slab model and three‐dimensional periodic boundary conditions. The strong attractive forces between HMX (or CL‐20) molecule and Al atoms induce the breaking of N‐O and N‐N bonds in nitro group. Subsequently, the dissociated oxygen atoms, NO2 groups, and radical fragments of HMX or CL‐20 oxidize the Al surface. The largest adsorption energy is ?1792.7 kJ/mol in B1, where CL‐20 decomposes into four O atoms and a CL‐20 fragment. With the number of the radical species in adsorption configurations increases, the corresponding adsorption energy increases greatly. We also investigated the decomposition mechanism of HMX and CL‐20 molecules on the Al(111) surface. The activation energies (E a) for the dissociations A2, A3, B1, and B6 are 31.2, 47.9, 75.5, and 75.9 kJ/mol, respectively. Although CL‐20 is more sensitive than HMX in its gaseous state, the E a of CL‐20 is higher than that of HMX when they adsorb and decompose on the Al(111) surface, which indicates that the HMX is even easier to decompose on Al(111) surface as compared with CL‐20. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
An empirical nonreactive force field has been developed for molecular dynamics (MD)/Monte Carlo simulation of the formation, diffusion, and agglomeration of point defects in the crystal lattice of the alpha modification of hexahydro-1,3,5-trinitro-1,3,5 triazine (RDX) using flexible molecules. Bond stretching and angle bending are represented by Morse and harmonic functions, and torsion by a truncated cosine series. Nonbonded interactions, both inter- and intramolecular, are described by Buckingham potentials separately parametrized. Intermolecular electrostatic interactions are treated via a Coulomb term coupled with a smooth 15.0 A cutoff radius. Parameters were taken in part from earlier published works and were determined partly by fitting to known molecular and crystal properties of RDX. In MD simulations at constant pressure and temperature, the model was able to stabilize and maintain the correct crystal structure, symmetry, and molecular conformation of alpha-RDX. Vibrational frequencies, lattice binding energy and dimensions, coefficients of thermal expansion, and several unusually short intermolecular distances are all reproduced in satisfactory agreement with experimental data.  相似文献   

12.
The reactions of AlMe(2)Y (Y = Me or Cl) with new ligands 2-(1,3,5-dithiazinan-5-yl)ethanol (1), 2-(1,3,5-dithiazinan-5-yl)-1-methylethanol (2), and 2-(1,3,5-dithiazinan-5-yl)-1-phenylethanol (3) are described. The ligands are coordinated to aluminum atoms by nitrogen and oxygen atoms, with a nitrogen based spiranic structure. Equimolar reactions gave dimeric structures bearing pentacoordinated aluminum atoms O-(AlMeY)-2-(1,3,5-dithiazinan-5-yl)ethanolates (4-7) as well as monometallic compounds with tetracoordinated aluminum atoms O-(AlMeY)-2-(1,3,5-dithiazinan-5-yl)ethanolates (8-9). Reactions with 2 equiv of the aluminum reagents afforded tetracoordinated dialuminum complexes O-(AlMeY)-O-(AlMe(2)Y)-2-(1,3,5-dithiazinan-5-yl)ethanolate (10-18). The structures of the new compounds were determined by NMR ((1)H,(13)C, and (27)Al) and complemented by X-ray diffraction of compounds 4, 10, and 16-18. Relevant intermolecular interactions C-H...S, C-H...Cl, and C-H...pi found in the crystalline network are reported.  相似文献   

13.
The adsorption of 1,3,5-trinitro-s-triazine (RDX) and triacetone triperoxide (TATP) on representative fragments of metal organic framework (IRMOF-1) was studied at the B3LYP/6-31G(d) level of theory. For examined adsorbates several possible adsorption positions toward the IRMOF-1 fragments were found. The adsorption strength of the adsorbate on IRMOF-1 is largely affected by the geometry of the active site of IRMOF-1 which controls the orientation of the target molecule with respect to the IRMOF-1 fragment. The calculations show that the adsorption on these fragments occurs due to the formation of hydrogen bonds between the molecular C–H groups and the oxygen atoms of IRMOF-1. The RDX and TATP molecules are the most strongly adsorbed on the linker fragment of IRMOF-1. This type of adsorption results in the polarization of RDX and TATP on the IRMOF-1 fragments. The interaction energy of two most stable RDX-, and TATP-IRMOF-1 adsorption systems are ?9.8 and ?12.8 kcal/mol, respectively. It can be concluded that the 1,4-benzenedicarboxylate site of IRMOF-1 shows the stronger molecular adsorption of RDX and TATP than the site containing [Zn4O(CO2)6] and also it is characterized by higher reactivity than the other considered sites. The binding of studied explosive molecules to IRMOF-1 consists of interplay between attractive interactions between the target molecule and MOF as well as the shielding by the IRMOF-1 fragment induced by the molecular adsorption. The relative importance of these effects depends on the chemical nature, the size, and the shape of the molecule and MOF. Small-size molecules require smaller space for the adsorption and also they are less shielded by the sizeable adsorbent. So they interact better when adsorbed on larger IRMOF-1 fragment. On the other side, larger molecules show higher adsorption strength with small fragments of IRMOF-1.  相似文献   

14.
Methanol adsorption on beta-Ga2O3 surface has been studied by Fourier transform infrared spectroscopy (FTIR) and by means of density functional theory (DFT) cluster model calculations. Adsorption sites of tetrahedral and octahedral gallium ions with different numbers of oxygen vacancies have been compared. The electronic properties of the adsorbed molecules have been monitored by computing adsorption energies, optimized geometry parameters, overlap populations, atomic charges, and vibrational frequencies. The gallia-methanol interaction has different behaviors according to the local surface chemical composition. The calculations show that methanol can react in three different ways with the gallia surface giving rise to a nondissociative adsorption, a dissociative adsorption, and an oxidative decomposition. The surface without oxygen vacancies is very reactive and produces the methanol molecule decomposition. The molecule is nondissociatively adsorbed by means of a hydrogen bond between the alcoholic hydrogen atom and a surface oxygen atom and a bond between the alcoholic oxygen atom and a surface gallium atom. Two neighbor oxygen vacancies on tetrahedral gallium sites produce the dissociation of the methanol molecule and the formation of a bridge bond between two surface gallium atoms and the methoxy group.  相似文献   

15.
To develop new highly energetic materials, we have considered the design of molecules with high nitrogen content. Possible candidates include 1,3,5‐triazine derivatives. In this work, we studied potential synthetic routes for melamine using the MP2/6‐31+G(d,p)//B3LYP/6‐31G(d) level of theory. The mechanisms studied here are stepwise mechanism beginning with the dimerization of cyanamide and one‐step termolecular mechanism. The same type of mechanism is also applied to nitro‐substituted 1,3,5‐triazines. Values for the heat of formation in the solid phase were predicted from density functional theory calculations. Densities were estimated from a regression equation obtained by molecular surface electrostatic potentials. The Cheetah program was used to study the explosive performance of these compounds. In this study, we found that the explosive properties of 2‐amino‐4, 6‐dinitro‐1, 3,5‐triazine (ADNTA), and 2,4,6‐trinitro‐1,3,5‐triazine (TNTA) are similar to those of RDX and HMX, respectively. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

16.
The surface dependence of CO adsorption on Ceria   总被引:1,自引:0,他引:1  
An understanding of the interaction between ceria and environmentally sensitive molecules is vital for developing its role in catalysis. We present the structure and energetics of CO adsorbed onto stoichiometric (111), (110), and (100) surfaces of ceria from first principles density functional theory corrected for on-site Coulomb interactions, DFT+U. DFT+U is applied because it can describe consistently the properties of both the stoichiometric and reduced surfaces. Our major finding is that the interaction is strongly surface dependent, consistent with experiment. Upon interaction of CO with the (111) surface, weak binding is found, with little perturbation to the surface or the molecule. For the (110) and (100) surfaces, the most stable adsorbate is that in which the CO molecule bridges two oxygen atoms and pulls these atoms out of their lattice sites, with formation of a (CO(3)) species. This results in a strong modification to the surface structure, consistent with that resulting from mild reduction. The electronic structure also demonstrates reduction of the ceria surface and consequent localization of charge on cerium atoms neighboring the vacancy sites. The surface-bound (CO(3)) species is identified as a carbonate, (CO(3))(2-) group, which is formed along with two reduced surface Ce(III) ions, in good agreement with experimental infrared data. These results provide a detailed investigation of the interactions involved in the adsorption of CO on ceria surfaces, allowing a rationalization of experimental findings and demonstrate further the applicability of the DFT+U approach to the study of systems in which reduced ceria surfaces play a role.  相似文献   

17.
一氧化碳共吸附法确定叔丁胺分子在Cu(111)表面的吸附位   总被引:1,自引:0,他引:1  
采用扫描隧道显微镜(STM)和密度泛函理论(DFT)研究了78 K时单个叔丁胺分子在Cu(111)表面的吸附位. 我们提出以共吸附的一氧化碳√3 ×√3 超结构为基底铜原子的标识方法, 确定了低覆盖度的叔丁胺分子在Cu(111)表面的吸附位为顶位. 而采用单个一氧化碳分子标识基底铜原子的位置, 同样得出了叔丁胺分子的吸附位为顶位. 此外, 还采用DFT计算叔丁胺分子在Cu(111)表面的优势吸附构型. 理论计算结果表明顶位吸附构型为能量最稳定的构型, 与实验结果相吻合.  相似文献   

18.
In this study, oxygen molecule adsorption on the surface of aluminum at various positions (top, bridge, and central sites) was studied, and the binding energies of oxygen species adsorbed on aluminum were calculated using density functional theory (DFT) within the generalized gradient approximation (GGA). The potential of the adsorption of oxygen on aluminum was examined as a function of both surface coverage and adsorption site. The relative stabilities of oxygen chemisorptions were independent of both the transition metal surface and surface coverage. That is, oxygen exhibited insignificant selectivity with respect to positions on the metal surface. Our data O2/Al surface chemisorptions revealed that the stables model for oxygen adsorption was that on the top site. The top site approach is important for the chemisorption processes because the adsorption energy for this model was lower than for the other sites. The paper presents the results of quantum chemical calculations using density functional theory method for adsorption of O2 molecules on Al (100) surface at cubic structure with LANL2DZ, SDD and 6-31G1 basis sets. We can extract energetic information about the stability of adsorption O2 on aluminum surface and calculation adsorption energy.  相似文献   

19.
By quantum chemical DFT M06-2X/6-31G(d,p) method, the equilibrium parameters of rigid and stable hydrocarbon clusters of icosahedral symmetry with a dodecahedron structure whose sites are occupied by 20 adamant-1,3,5-triyl moieties linked with each other either directly or through bridges containing two or four carbon atoms are determined. The radius of the smallest studied quasispherical molecules is 1.05 nm and that of the largest one is 1.76 nm. The radius of the inner cavity in them varies from 0.37 nm (C200H260) to 1.06 nm (C320H260). Perfluorination increases the outer and decreases the inner radius of super dodecahedrane.  相似文献   

20.
We describe the synthesis of two novel well-defined tower-shaped 1,3,5-trisubstituted adamantanes 30 and 33 that incorporate a macrocyclic trilactam ring system. Each nanoscale molecule has a broad tripodal base consisting of three identical sulfur-containing termini as the tripod feet, 4-acetylsulfanylmethylphenyl units in the case of 30 and 3,5-bis(acetylsulfanylmethyl)phenyl units in the case of 33. The sulfur atoms are designed to bind the molecules trivalently to the apex of a gold-coated commercial AFM tip through formation of three S-Au bonds. The rigid adamantane-derived head unit with a single hydrogen atom at the apex is designed to scan the sample. Molecules 30 and 33 are synthesized from 1,3,5-triethynyladamantane by a series of Sonogashira coupling reactions involving terminal alkynes and aryl iodides. A macrocyclic trilactam unit is included for added rigidity. We demonstrate that molecule 30 is sufficiently large and rigid to be visualized by a conventional AFM tip. These nanoscale molecules may also find application as chemically well-defined nanoscale objects for calibration of AFM tips.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号