共查询到20条相似文献,搜索用时 15 毫秒
1.
The two-phase flow of a hydrophobic ionic liquid and water was studied in capillaries made of three different materials (two types of Teflon, FEP and Tefzel, and glass) with sizes between 200 μm and 270 μm. The ionic liquid was 1-butyl-3-methylimidazolium bis{(trifluoromethyl)sulfonyl}amide, with density and viscosity of 1420 kg m−3 and 0.041 kg m−1 s−1, respectively. Flow patterns and pressure drop were measured for two inlet configurations (T- and Y-junction), for total flow rates of 0.065–214.9 cm3 h−1 and ionic liquid volume fractions from 0.05 to 0.8. The continuous phase in the glass capillary depended on the fluid that initially filled the channel. When water was introduced first, it became the continuous phase with the ionic liquid forming plugs or a mixture of plugs and drops within it. In the Teflon microchannels, the order that fluids were introduced did not affect the results and the ionic liquid was always the continuous phase. The main patterns observed were annular, plug, and drop flow. Pressure drop in the Teflon microchannels at a constant ionic liquid flow rate, was found to increase as the ionic liquid volume fraction decreased, and was always higher than the single phase ionic liquid value at the same flow rate as in the two-phase mixture. However, in the glass microchannel during plug flow with water as the continuous phase, pressure drop for a constant ionic liquid flow rate was always lower than the single phase ionic liquid value. A modified plug flow pressure drop model using a correlation for film thickness derived for the current fluids pair showed very good agreement with the experimental data. 相似文献
2.
The study considers the prediction of the entrained liquid fraction in adiabatic gas–liquid annular two-phase flow in vertical pipes. Nine empirical correlations have been tested against an experimental data bank drawn together in this study containing 1504 points for 8 different gas–liquid combinations and 19 different tube diameters from 5.00 mm to 57.1 mm. The correlation of Sawant, Ishii and Mishima and the one of Oliemans, Pots and Trompé were found to best reproduce the available data. A new correlating approach, derived from both physical intuition and dimensional analysis and capable of providing further physical insight into the liquid film atomization process, was proposed and worked better than any of the existing methods. This new correlation is based on the core flow Weber number that is also a controlling dimensionless group in determining the wall shear stress and associated frictional pressure gradient of annular flows. 相似文献
3.
4.
《International Journal of Multiphase Flow》2004,30(6):551-563
A map for the determination of flow pattern for two-phase flow of gas and non-Newtonian liquid in the vertical pipe has been presented. Our own experimental data confirm applicability of such a map. 相似文献
5.
An experimental investigation was carried out on viscous oil–gas flow characteristics in a 69 mm internal diameter pipe. Two-phase flow patterns were determined from holdup time-traces and videos of the flow field in a transparent section of the pipe, in which synthetic commercial oils (32 and 100 cP) and sulfur hexafluoride gas (SF6) were fed at oil superficial velocities from 0.04 to 3 m/s and gas superficial velocities from 0.0075 to 3 m/s. 相似文献
6.
A new model coupling two basic models, the model based on interface tracking method and the two-fluid model, for simulating gas–liquid two-phase flow is presented. The new model can be used to simulate complex multiphase flow in which both large-length-scale interface and small-length-scale gas–liquid interface coexist. By the physical state and the length scale of interface, three phases are divided, including the liquid phase, the large-length-scale-interface phase (LSI phase) and the small-length-scale-interface phase (SSI phase). A unified solution framework shared by the two basic models is built, which makes it convenient to perform the solution process. Based on the unified solution framework, the modified MCBA–SIMPLE algorithm is employed to solve the Navier–Stokes equations for the proposed model. A special treatment called “volume fraction redistribution” is adopted for the special grids containing all three phases. Another treatment is proposed for the advection of large-length-scale interface when some portion of SSI phase coalesces into LSI phase. The movement of the large-length-scale interface is evaluated using VOF/PLIC method. The proposed model is equivalent to the two-fluid model in the zone where only the liquid phase and the SSI phase are present and to the model based on interface tracking method in the zone where only the liquid phase and the LSI phase are present. The characteristics of the proposed model are shown by four problems. 相似文献
7.
Jing-yu Xu Dong-hui Li Jun Guo Ying-xiang Wu 《International Journal of Multiphase Flow》2010,36(11-12):930-939
The present study has attempted to investigate phase inversion and frictional pressure gradients during simultaneous vertical flow of oil and water two-phase through upward and downward pipes. The liquids selected were white oil (44 mPa s viscosity and 860 kg/m3 density) and water. The measurements were made for phase velocities varying from 0 to 1.24 m/s for water and from 0 to 1.87 m/s for oil, respectively. Experiments were carried either by keeping the mixture velocity constant and increasing the dispersed phase fraction or by keeping the continuous phase superficial velocity constant and increasing the dispersed phase superficial velocity. From the experimental results, it is shown that the frictional pressure gradient reaches to its lower value at the phase inversion point in this work. The points of phase inversion are always close to an input oil fraction of 0.8 for upward flow and of 0.75 for downward flow, respectively. A few models published in the literature are used to predict the phase inversion point and to compare the results with available experimental data. Suitable methods are suggested to predict the critical oil holdup at phase inversion based on the different viscosity ratio ranges. Furthermore, the frictional pressure gradient is analyzed with several suitable theoretical models according to the existing flow patterns. The analysis reveals that both the theoretical curves and the experimental data exhibit the same trend and the overall agreement of predicted values with experimental data is good, especially for a high oil fraction. 相似文献
8.
A bubbly gas–bubbly oil flow pattern may occur when water, heavy oil and gas flow simultaneously in vertical pipes in such a way that water is the continuous phase. In this work, a one-dimensional, thermal, transient two-fluid mathematical model, for such flow, is presented. The model consists of mass, momentum and energy conservation equations for every phase whose numerical solution is based on the finite difference technique in the implicit scheme. The model is able to predict pressure, temperature, volumetric fraction and velocity profiles. For accurate modeling of multiphase flows, the key issue is to specify the adequate closure relationships, thus drag and virtual mass forces for the gas and oil phases were taken into account and special attention was paid on the gas–oil drag force. When this force was included into the model it was found that: (1) such force had the same order of magnitude than the oil drag force and both forces were smaller than the gas drag force, (2) the pressure, gas and oil velocities and gas and oil volume fraction profiles were affected, (3) the numerical stability was increased. The model predictions are in agreement with experimental data reported in literature. 相似文献
9.
10.
Liquid–liquid two-phase flow in microchannels is capable of boosting the heat removal rate in cooling processes. Formation of different two-phase flow patterns which affect the heat transfer rate is numerically investigated here in a T-junction containing water-oil flow. For this purpose, the finite element method (FEM) is applied to solve the unsteady two-phase Navier–Stokes equations along with the level set (LS) equation in order to capture the interface between phases. It is shown that the two-phase flow pattern in microchannels depends on the flow initial condition which causes hysteresis effect in two-phase flow. In this study, the hysteresis is observed in flow pattern and consequently in the heat transfer rate. The effect of wall contact angle on the hydrodynamics and heat transfer in the microchannel is investigated to gain useful insight into the hysteresis phenomenon. It is observed that the hysteresis is significant in super-hydrophilic microchannels, while it disappears at the contact angle of 75°. The effect of water to oil flow rate ratio (Qwat/Qoil) on the heat transfer is also studied. The flow rate ratio has a negligible effect on the Nusselt number (Nu) in the dripping regime, while the Nu decreases with an increase of Qwat/Qoil in the co-flow regime. The thickness of the oil film, velocity, and temperature distribution are studied in the co-flow regime. It is revealed that the normalized slip velocity reduces at higher values of Qwat/Qoil, which causes a reduction in the averaged Nu. In dripping regimes, higher flow rate ratios lead to a more frequent generation of droplet/slugs at a smaller size. The passage of the slugs or droplets increases the local Nu. Larger droplets generated at lower flow rate ratios cause a larger increase in the local Nu than smaller droplets. The temperature and velocity field around the droplets are also illustrated to investigate the heat transfer improvement. The generated vortex at the tip of the oil jet causes an increase in the velocity and Nu on the water side. 相似文献
11.
12.
A new method to pattern recognition of gas–liquid two-phase flow regimes based on improved local binary pattern (LBP) operator is proposed in this paper. Five statistic features are computed using the texture pattern matrix obtained from the improved LBP. The support vector machine and back-propagation neural network are trained to flow pattern recognition of five typical gas–liquid flow regimes. Experimental results demonstrate that the proposed method has achieved better recognition accuracy rates than others. It can provide reliable reference for other indirect measurement used to analyze flow patterns by its physical objectivity. 相似文献
13.
A two-fluid model in the Eulerian–Eulerian framework has been implemented for the prediction of gas volume fraction, mean phasic velocities, and the liquid phase turbulence properties for gas–liquid upward flow in a vertical pipe. The governing two-fluid transport equations are discretized using the finite volume method and a low Reynolds number model is used to predict the turbulence field for the continuous liquid phase. In the present analysis, a fully developed one-dimensional flow is considered where the gas volume fraction profile is predicted using the radial force balance for the bubble phase. The current study investigates: (1) the turbulence modulation terms which represent the effect of bubbles on the liquid phase turbulence in the k–ε transport equations; (2) the role of the bubble induced turbulent viscosity compared to turbulence generated by shear; and (3) the effect of bubble size on the radial forces which results in either a center-peak or a wall-peak in the gas volume fraction profiles. The results obtained from the current simulation are generally in good agreement with the experimental data, and somewhat improved over the predictions of some previous numerical studies. 相似文献
14.
15.
16.
17.
This paper concerns experimental investigation of two-phase air–water flow in a 5 mm circular channel for different gas and water volume flow rates. Flow patterns are recorded using a high-speed digital camera. To investigate the spatial correlations of flow structures, we propose a new technique for extracting high resolution space–time series from video frames. For the extracted series, Eulerian space–time correlations are estimated and represented by correlation curves and spatio-temporal 2D maps for several gas and water volume flow rates as well as for different channel inclinations. The characteristic features of the flow patterns can be deduced from the correlation results. 相似文献
18.
Gas–Liquid two phase co-current flow in a vertical riser with an internal diameter of 127 mm was investigated in the churn flow pattern. This paper presents detailed experimental data obtained using a Wire Mesh Sensor. It shows that the most obvious features of the flow are huge waves travelling on the liquid film. Wisps, large tendrils of liquid and the product of incomplete atomisation, which had previously detected in smaller diameter pipes, have also been found in the larger diameter pipe employed here. The output of the Wire Mesh Sensor has been used to determine the overall void fraction. When examined within a drift flux framework, it shows a distribution coefficient of ∼1, in contrast to data for lower gas flow rates. Film thickness time series extracted from the Wire Mesh Sensor output have been examined and the trends of mean film thickness, that of the base film and the wave peaks are presented and discussed. The occurrence of wisps and their frequencies have been quantified. 相似文献
19.
《Particuology》2022
In this study, an inverse-problem method was applied to estimate the solid concentration in a solid–liquid two-phase flow. An algebraic slip mixture model was introduced to solve the forward problem of solid–liquid convective heat transfer. The time-average conservation equations of mass, momentum, energy, as well as the volume fraction equation were computed in a computational fluid dynamics (CFD) simulation. The solid concentration in the CFD model was controlled using an external program that included the inversion iteration, and an optimal estimation was performed via experimental measurements. Experiments using a fly-ash–water mixture and sand–water mixture with different solid concentrations in a horizontal pipeline were conducted to verify the accuracy of the inverse-problem method. The estimated results were rectified using a method based on the relationship between the estimated results and estimation error; consequently, the accuracy of the corrected inversion results improved significantly. After a verification through experiments, the inverse-problem method was concluded to be feasible for predicting the solid concentration, as the estimation error of the corrected results was within 7% for all experimental samples for a solid concentration of less than 50%. The inverse-problem method is expected to provide accurate predictions of the solid concentration in solid–liquid two-phase flow systems. 相似文献
20.
We detect the flow structures of a horizontal oil–water two-phase flow in a 20 mm inner-diameter pipe using 8-channels radial mini-conductance probes. In particular, we present an experimental flow pattern map that includes 218 flow conditions and compare this map to the flow pattern transitional boundaries predicted by published models. In addition, using the Adaptive Optimal Kernel Time–Frequency Representation, we analyze the conductance fluctuating signals and characterize the flow pattern in terms of the total energy and dominant frequency. Based on the liquid holdup measurements using the quickly closing valve technology combined with three parallel-wire capacitance probes, we investigate the slip effect between the oil and water phases under various flow conditions. The results show that the flow structures greatly affect the slippage, and the slip ratio is sensitive to flow pattern variations. 相似文献