首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The flow boiling heat transfer characteristics of R134a in the multiport minichannel heat exchangers are presented. The heat exchanger was designed as the counter flow tube-in-tube heat exchanger with refrigerant flowing in the inner tube and hot water in the gap between the outer and inner tubes. Two inner tubes were made from extruded multiport aluminium with the internal hydraulic diameter of 1.1 mm for 14 numbers of channels and 1.2 mm for eight numbers of channels. The outer surface areas of two inner test sections are 5979 mm2 and 6171 m2, while the inner surface areas are 13,545 mm2 and 8856 mm2 for 14 and eight numbers of channels, respectively. The outer tube of heat exchanger was made from circular acrylic tube with an internal hydraulic diameter of 25.4 mm. The experiments were performed at the heat fluxes between 15 and 65 kW/m2, mass flux of refrigerant between 300 and 800 kg/m2 s and saturation pressure ranging from 4 to 6 bar. For instance the boiling curve, average heat transfer coefficients are discussed. The comparison results of two test sections with different the number of channels are investigated. The results are also compared with nine existing correlations. The new correlation for predicting the heat transfer coefficient was also proposed.  相似文献   

2.
This paper presents the results of an experimental study carried out with R-134a during flow boiling in a horizontal tube of 2.6 mm ID. The experimental tests included (i) heat fluxes in the range from 10 to 100 kW/m2, (ii) the refrigerant mass velocities set to the discrete values in the range of 240-930 kg/(m2 s) and (iii) saturation temperature of 12 and 22 °C. The study analyzed the heat transfer, through the local heat transfer coefficient along of flow, and pressure drop, under the variation of these different parameters. It was possible to observe the significant influence of heat flux in the heat transfer coefficient and mass velocity in the pressure drop, besides the effects of saturation temperature. In the low quality region, it was possible to observe a significant influence of heat flux on the heat transfer coefficient. In the high vapor quality region, for high mass velocities, this influence tended to vanish, and the coefficient decreased. The influence of mass velocity in the heat transfer coefficient was detected in most tests for a threshold value of vapor quality, which was higher as the heat flux increased. For higher heat flux the heat transfer coefficient was nearly independent of mass velocity. The frictional pressure drop increased with the increase in vapor quality and mass velocity. Predictive models for heat transfer coefficient in mini channels were evaluated and the calculated coefficient agreed well with measured data within a range 35% for saturation temperature of 22 °C. These results extend the ranges of heat fluxes and mass velocities beyond values available in literature, and add a substantial contribution to the comprehension of boiling heat transfer phenomena inside mini channels.  相似文献   

3.
Boiling heat transfer measurements on a tube designed to yield the peripheral variation of heat transfer coefficient without interfering with the nucleation site density are presented. A variation of up to 25% around the tube is found with a maximum at the base. High speed cine photography was used to estimate the variation of mean bubble layer thickness and mean velocities with angle. An iterative heat balance around the periphery indicated a voidage decrease from about unity at the base to 0.3–0.6 at 90°  相似文献   

4.
Researches on two-phase flow and pool boiling heat transfer in microgravity, which included ground-based tests, flight experiments, and theoretical analyses, were conducted in the National Microgravity Laboratory/CAS. A semi-theoretical Weber number model was proposed to predict the slug-to-annular flow transition of two-phase gas–liquid flows in microgravity, while the influence of the initial bubble size on the bubble-to-slug flow transition was investigated numerically using the Monte Carlo method. Two-phase flow pattern maps in microgravity were obtained in the experiments both aboard the Russian space station Mir and aboard IL-76 reduced gravity airplane. Mini-scale modeling was also used to simulate the behavior of microgravity two-phase flow on the ground. Pressure drops of two-phase flow in microgravity were also measured experimentally and correlated successfully based on its characteristics. Two space experiments on pool boiling phenomena in microgravity were performed aboard the Chinese recoverable satellites. Steady pool boiling of R113 on a thin wire with a temperature-controlled heating method was studied aboard RS-22, while quasi-steady pool boiling of FC-72 on a plate was studied aboard SJ-8. Ground-based experiments were also performed both in normal gravity and in short-term microgravity in the drop tower Beijing. Only slight enhancement of heat transfer was observed in the wire case, while enhancement in low heat flux and deterioration in high heat flux were observed in the plate case. Lateral motions of vapor bubbles were observed before their departure in microgravity. The relationship between bubble behavior and heat transfer on plate was analyzed. A semi-theoretical model was also proposed for predicting the bubble departure diameter during pool boiling on wires. The results obtained here are intended to become a powerful aid for further investigation in the present discipline and development of two-phase systems for space applications.  相似文献   

5.
This research focuses on heat transfer to R-134a during flow boiling in a 1.75 mm internal diameter tube. Flow visualisation and heat transfer experiments are conducted to obtain heat transfer coefficients for different flow patterns. The measured data in each flow regime are compared with predictions from a three-zone flow boiling model. The calculations are in fair agreement with the experimental results which correspond in particular to slug flow, throat-annular flow and churn flow regimes under conditions of low heat flux.  相似文献   

6.
Two-phase flow and flow boiling phenomena of fluidic mixtures in small and mini channels are becoming important in the miniaturization of thermal systems. This paper aims to present a state-of-the-art review in this important area and to identify what have been done so far and what still need to be done in the future. Firstly, various definitions of small and mini channels are described and the criteria based on these definitions are compared with each other. Comments on different viewpoints of the channel size classifications are acknowledged. Secondly, the background of two-phase flow and flow boiling of mixtures is described. Then, the current research status of two-phase flow and flow boiling of mixtures in normal size channels is presented as it is a basis for the study of two-phase flow and flow boiling of mixtures in small and mini channels. Finally, an overall review of two-phase flow and flow boiling of mixtures in small and mini channels is presented. It is concluded that the available study of two-phase flow and flow boiling of mixtures in small and mini channels is rather scarce and a systematic knowledge of two-phase flow and flow boiling of mixtures in small and mini channels is required. Based on this review, the future research directions including both fundamental and applied research in this area have been indicated.  相似文献   

7.
Many heat exchangers, such as shell and tube heat exchangers and kettle reboilers, involve boiling with flow across tubes. For rational design of such heat exchangers, it is desirable to be able to predict heat transfer on a single tube. The dimensionless correlation presented here agrees well with available data for subcooled boiling during crossflow on a single tube. The correlating parameters are the same as those used for boiling inside tubes16. The data correlated include three fluids, four tube materials, tube diameters from 1.2 to 25.4 mm, subcooling from 0 to 80°C, and velocities from 0.02 to 7.8 m/s. The mean deviation of 334 data points is 9.5%. Hence the new correlation appears to be usable over a wide range of parameters.  相似文献   

8.
Increasing attention has been focused on carbon dioxide (CO2) heat pump system where the temperature level is rather low, while the operating pressure is rather high. In this system, the density difference between vapor and liquid becomes rather small, which significantly affects flow patterns. Low surface tension and latent heat also have significant influence on two-phase flow patterns and heat transfer. This paper describes experimental and numerical investigation on flow patterns and heat transfer characteristics of boiling flow CO2 at high pressure in horizontal small-bore tubes ranging from 1.0 mm to 3.0 mm I.D. Even though the density difference is rather small at high pressure, phase stratification takes place, which leads to the intermittent dryout at the upper wall. So far developed discrete bubble model by the authors for vertical flows is modified so as to include horizontal flow mechanisms. The predicted flow patterns with this new model agree on the whole with the experimental observation.  相似文献   

9.
10.
We report the results of an experimental investigation of the heat transfer during nucleate boiling on a spatially confined boiling surface. The heat flux as a function of the boiling surface temperature was measured in pool boiling pots with diameters ranging from 15 mm down to 4.5 mm. It was found that a reduction of the pool diameter leads to an enhancement of the nucleate boiling heat flux for most of the boiling curve. Our experimental results indicate that this enhancement is not affected by the depth of the boiling pot, the material of the bounding wall, or the diameter of the inlet water supply. High-speed camera imaging shows that the heat transfer enhancement for the spatially confined pool boiling occurs in conjunction with a stable circulating flow, which is in contrast to the chaotic and mainly upward motion for boiling in larger pool diameters. An explanation for the enhancement of the heat transfer and the associated change in flow pattern is found in the singularisation of the nucleate boiling process.  相似文献   

11.
An experimental study was performed to characterize the boiling heat transfer of impinging circular submerged jets on simulated microelectronic chips with a nominal area of 5 mm × 5 mm. The heat transfer modes included natural convection, partially developed nucleate boiling, fully developed nucleate boiling and critical heat flux. The study included the effects of jet parameters and fluid subcooling on the nucleate boiling. The results showed that the nucleate boiling data varied only with fluid subcooling regardless of jet parameters and that both the pool and impingement nucleate boiling curves at the same subcooling condition were well correlated. The high heat flux portions of the boiling curves with jet exit velocities greater than 10 m/s were corrected for the elevated saturation temperature. A new expression was developed with an interpolation method to construct the partially developed nucleate boiling curve.  相似文献   

12.
In this paper an overview of the boiling process, including recent advances made toward a mechanistic understanding of nucleate and transition boiling, is presented. Out of necessity, the review does not include boiling on enhanced surfaces or boiling of mixtures. Discussion of film boiling is also not included, as it is the subject of another review article. Only pool and external flow boiling of ordinary liquids are discussed. A few comments are made with respect to the theoretical and experimental studies that should be made in the future to further our understanding of the boiling process.  相似文献   

13.
This part of the paper presents the current experimental flow boiling heat transfer and CHF data acquired for R134a, R236fa and R245fa in single, horizontal channels of 1.03, 2.20 and 3.04 mm diameters over a range of experimental conditions. The aim of this study is to investigate the effects of channel confinement, heat flux, flow pattern, saturation temperature, subcooling and working fluid properties on the two-phase heat transfer and CHF. Experimentally, it was observed that the flow boiling heat transfer coefficients are a significant function of the type of two-phase flow pattern. Furthermore, the monotonically increasing heat transfer coefficients at higher vapor qualities, corresponding to annular flow, signifies convective boiling as the dominant heat transfer mechanism in these small scale channels. The decreasing heat transfer trend at low vapor qualities in the slug flow (coalescing bubble dominated regime) was indicative of thin film evaporation with intermittent dry patch formation and rewetting at these conditions. The coalescing bubble flow heat transfer data were well predicted by the three-zone model when setting the dryout thickness to the measured surface roughness, indicating for the first time a roughness effect on the flow boiling heat transfer coefficient in this regime. The CHF data acquired during the experimental campaign indicated the influence of saturation temperature, mass velocity, channel confinement and fluid properties on CHF but no influence of inlet subcooling for the conditions tested. When globally comparing the CHF values for R134a in the 0.51-3.04 mm diameter channels, a peak in CHF peak was observed lying in between the 0.79 (Co ≈ 0.99) and 1.03 (Co ≈ 0.78) mm channels. A new CHF correlation has been proposed involving the confinement number, Co that is able to predict CHF for R134a, R236fa and R245fa in single-circular channels, rectangular multichannels and split flow rectangular multichannels. In summary, the present flow boiling and CHF trends point to a macro-to-microscale transition as indicated by the results presented in Ong and Thome (2011) [1].  相似文献   

14.
Flow boiling behaviors in hydrophilic and hydrophobic microchannels   总被引:1,自引:0,他引:1  
Surface wettability is a critical parameter in small scale phenomena, especially two-phase flow, since the surface force becomes dominant as size decreases. In present study, experiments of water flow boiling in hydrophilic and hydrophobic rectangular microchannels were conducted to investigate the wettability effect on flow boiling in rectangular microchannels. The rectangular microchannels were fabricated with a photosensitive glass to visualize flow pattern. The hydrophilic bare photosensitive glass microchannel was chemically treated to obtain a hydrophobic microchannel. And, visualization of flow patterns was carried out. And boiling heat transfer and two-phase pressure drop was analyzed with visualization results. The boiling heat transfer coefficient in the hydrophobic rectangular microchannel was higher than that in the hydrophilic rectangular microchannel, which was highly related with nucleation site density and liquid film motion. And the pressure drop in the hydrophobic rectangular microchannel was higher than that in the hydrophilic rectangular microchannel, which was highly related with unstable motions of bubble and liquid film. Finally, we find out the wettability is important parameter on the flow pattern, which were highly related with two-phase heat and mass transfer.  相似文献   

15.
利用格子Boltzmann方法模拟二维水平通道内水的流动沸腾过程,获得不同壁面过热度下流型特点和不同因素对换热过程的影响规律。结果表明,随着壁面过热度升高,流道内流型依次经历从泡状流、弹状流到反环流的转变,平均热流密度和平均换热系数先增大后减小。入口流速降低会使流道内出现受限气泡流,核态沸腾受到抑制。提高入口流速能够有效促进气泡脱离,壁面平均换热系数随入口流速增大而增大,但增长速率有所减小。减小通道宽度有利于汽化现象发生,核态沸腾得到强化,壁面平均换热系数有所提高。  相似文献   

16.
An analysis is carried out to study the flow and heat transfer characteristics in a second grade fluid over a stretching sheet with prescribed surface temperature including the effects of frictional heating, internal heat generation or absorption, and work due to deformation. In order to solve the fourth-order non-linear differential equation, associated with the flow problem, a fourth boundary condition is augmented and a proper sign for the normal stress modulus is used. It is observed that for a physical flow problem the solution is unique. The solutions for the temperature and the heat transfer characteristics are obtained numerically and presented by a table and graphs. Furthermore, it is shown that the heat flow is always from the stretching sheet to the fluid.  相似文献   

17.
This paper experimentally investigates flow boiling characteristics in a cross-linked microchannel heat sink at low mass fluxes and high heat fluxes. The heat sink consists of 45 straight microchannels each with a hydraulic diameter of 248 μm and heated length of 16 mm. Three cross-links, of width 500 μm, are introduced in the present microchannel heat sink to achieve better temperature uniformity and to avoid flow mal-distribution. Flow visualization, flow instability, two-phase pressure drop, and two-phase heat transfer measurements are conducted using the dielectric coolant FC-72 over a range of heat flux from 7.2 to 104.2 kW/m2, mass flux from 99 to 290 kg/m2 s, and exit quality from 0.01 to 0.71. Thermochromic liquid crystals are used in the present study as full-field surface temperature sensors to map the temperature distribution on the heat sink surface. Flow visualization studies indicate that the observed flow regime is primarily slug. Visual observations of flow patterns in the cross-links demonstrate that bubbles nucleate and grow rapidly on the surface of the cross-links and in the tangential direction at the microchannels’ entrance due to the effect of circulations generated in those regions. The two-phase pressure drop strongly increases with the exit quality, at xe,o < 0.3, and the two-phase frictional pressure drop increases by a factor of 1.6–2 compared to the straight microchannel heat sink. The flow boiling heat transfer coefficient increases with increasing exit quality at a constant mass flux, which is caused by the dominance of the nucleation boiling mechanism in the cross-link region.  相似文献   

18.
A fractal model for the subcooled flow boiling heat transfer is proposed in this paper. The analytical expressions for the subcooled flow boiling heat transfer are derived based on the fractal distribution of nucleation sites on boiling surfaces. The proposed fractal model for the subcooled flow boiling heat transfer is found to be a function of wall superheat, liquid subcooling, bulk velocity of fluid (or Reynolds number), fractal dimension, the minimum and maximum active cavity size, the contact angle and physical properties of fluid. No additional/new empirical constant is introduced, and the proposed model contains less empirical constants than the conventional models. The proposed model takes into account all the possible mechanisms for subcooled flow boiling heat transfer. The model predictions are compared with the existing experimental data, and fair agreement between the model predictions and experimental data is found for different bulk flow rates.  相似文献   

19.
An experimental investigation of flow boiling heat transfer in a commercially available microfin tube with 9.52 mm outer diameter has been carried out. The microfin tube is made of copper with a total fin number of 55 and a helix angle of 15°. The fin height is 0.24 mm and the inner tube diameter at fin root is 8.95 mm. The test tube is 1 m long and is electrically heated. The experiments have been performed at saturation temperatures between 0 and −20°C. The mass flux was varied between 25 and 150 kg/m2s, the heat flux from 15,000 W/m2 down to 1,000 W/m2. All measurements have been performed at constant inlet vapour quality ranging from 0.1 to 0.7. The measured heat transfer coefficients range from 1,300 to 15,700 W/m2K for R134a and from 912 to 11,451 W/m2K for R404A. The mean heat transfer coefficient of R134a is in average 1.5 times higher than for R404A. The mean heat transfer coefficient has been compared with the correlations by Koyama et al. and by Kandlikar. The deviations are within ±30% and ±15%, respectively. The influence of the mass flux on the heat transfer is most significant between 25 and 62.5 kg/m2s, where the flow pattern changes from stratified wavy flow to almost annular flow. This flow pattern transition is shifted to lower mass fluxes for the microfin tube compared to the smooth tube.  相似文献   

20.
This paper reports an experimental investigation of the heat transfer performance of the new low-GWP refrigerants, R1234yf and R1234ze(E), during flow boiling heat transfer inside a horizontal high porosity copper foam with 5 Pores Per Inch (PPI). Metal foams are a class of cellular structured materials consisting of a stochastic distribution of interconnected pores; these materials have been proposed as effective solutions for heat transfer enhancement during both single and two-phase heat transfer. R1234yf and R1234ze(E) refrigerants are appealing alternatives of the more traditional R134a by virtue of their negligible values of GWP and normal boiling temperatures close to that of R134a, which make them suitable solution in several different applications, such as: refrigeration and air conditioning and electronic thermal management. This work compares the two-phase heat transfer behaviour of these new HFO refrigerants, studying the boiling process inside a porous medium and permitting to understand their effective heat transfer capabilities. The experimental measurements were carried out by imposing three different heat fluxes: 50, 75, and 100 kW m−2, at a constant saturation temperature of 30 °C; the refrigerant mass velocity was varied between 50 and 200 kg m−2 s−1, whilst the mean vapour quality varied from 0.2 to 0.95. The two-phase heat transfer and pressure drop performance of the two new HFO refrigerants is compared against that of the more traditional R134a.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号