首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
悬浮颗粒运动的格子Boltzmann数值模拟   总被引:7,自引:0,他引:7  
吴锤结  周菊光 《力学学报》2004,36(2):151-162
将固体颗粒的牛顿力学和格子Boltzmann方法相结合,研究不规则形状悬浮颗粒在流场中的运动。通过受力分析,精确求得其所受合力、合力矩、合力作用中心等。提出了跟随颗粒运动的动网格计算域技术和模拟悬浮颗粒转动运动的局部数组方法及Euler-Lagrange两套坐标技术。通过对椭圆颗粒运动的数值模拟和对照他人对矩形颗粒的研究,分析了其复杂运动规律,并提供了合理的物理解释。结果表明:运用格子Boltzmann方法和上述特殊技术可以得到与有限元方法相同的模拟精度,且具有计算速度快、对复杂形状边界处理方便灵活、程序简单及特别适合大规模并行计算等优点。  相似文献   

2.
An efficient immersed boundary-lattice Boltzmann method (IB-LBM) is proposed for fully resolved simulations of suspended solid particles in viscoelastic flows. Stress LBM based on Giesekus and Oldroyd-B constitutive equation are used to model the viscoelastic stress tensor. A boundary thickening-based direct forcing IB method is adopted to solve the particle–fluid interactions with high accuracy for non-slip boundary conditions. A universal law is proposed to determine the diffusivity constant in a viscoelastic LBM model to balance the numerical accuracy and stability over a wide range of computational parameters. An asynchronous calculation strategy is adopted to further improve the computing efficiency. The method was firstly applicated to the simulation of sedimentation of a single particle and a pair of particles after good validations in cases of the flow past a fixed cylinder and particle migration in a Couette flow against FEM and FVM methods. The determination of the asynchronous calculation strategy and the effect of viscoelastic stress distribution on the settling behaviors of one and two particles are revealed. Subsequently, 504 particles settling in a closed cavity was simulated and the phenomenon that the viscoelastic stress stabilizing the Rayleigh–Taylor instabilities was observed. At last, simulations of a dense flow involving 11001 particles, the largest number of particles to date, were performed to investigate the instability behavior induced by elastic effect under hydrodynamic interactions in a viscoelastic fluid. The elasticity-induced ordering of the particle structures and fluid bubble structures in this dense flow is revealed for the first time. These simulations demonstrate the capability and prospects of the present method for aid in understanding the complex behaviors of viscoelastic particle suspensions.  相似文献   

3.
颗粒群碰撞搜索及CFD-DEM耦合分域求解的推进算法研究   总被引:1,自引:0,他引:1  
在采用计算流体力学-离散元耦合方法(computational fluiddynamics-discrete element method, CFD-DEM)进行固液两相耦合分析时, 颗粒计算时间步的选取直接影响到耦合计算精度和计算效率. 为此, 本文选取每个目标颗粒为研究对象, 引入插值函数计算时间步的运动位移, 构建可变空间搜索网格; 通过筛选可能碰撞颗粒建立搜索列表, 采用逆向搜索方式判断碰撞颗粒, 从而提出一种改进的DEM方法(modified discreteelement method, MDEM). 该算法在颗粒群与流体耦合计算中, 颗粒计算初始时间步选取不受颗粒碰撞时间限制, 通过自动调整和修正实现大步长, 由颗粒和流体耦合条件实时更新流体计算时间步, 使颗粒计算时间步选取过小导致计算效率低、选取过大导致颗粒碰撞漏判的问题得以解决, 为颗粒与流体耦合的数值模拟提供了行之有效的计算方法. 通过两个颗粒和多个颗粒的数值模拟, 得到的颗粒间碰撞力、碰撞位置及次数, 与理论计算结果的相对误差均低于2%, 与传统的DEM碰撞搜索算法相比, 在选取的3种计算时间步均不会影响计算精度, 且有较高的计算效率. 通过多个颗粒与流体的耦合数值模拟, 采用传统的CFD-DEM方法, 只有颗粒计算时间步选取10$^{-6}$ s或更小才能得到精确解, 而采用本文方法取10$^{-4}$ s也能够得到精确解, 避免了颗粒碰撞随时间步增大而出现的漏判问题, 且计算耗时降低了16.7%.   相似文献   

4.
The Lattice-Boltzmann-Method (LBM) is a powerful and robust approach for calculating fluid flows over or through complex geometries. This method was further developed for allowing the calculation of several problems relevant to dispersed particle-laden flows. For that purpose two approaches have been developed. The first approach concerns the coupling of the LBM with a classical Lagrangian procedure where the particles are considered as point-masses and hence the particles and the flow around them are numerically not resolved. As an example of use, the flow through a single pore representing a single element of a filter medium was considered and the deposition of nano-scale particles was simulated. The temporal evolution of the deposit structures is visualised and both the filtration efficiency and the pressure drop are simulated and compared with measurements. In the second developed LBM-approach, the particles are fully resolved by the numerical grid whereby the flow around particles is also captured and it is possible to effectively calculate forces on complex particles from the bounce-back boundary condition. As a case study the flow around spherical agglomerates consisting of poly-sized spherical primary particles with sintering contact is examined. Using local grid refinement and curved wall boundary condition, accurate simulations of the drag coefficient of such complex particles were performed. Especially the effect of porosity on the drag was analysed. Moreover, the flow about very porous fractal flocks, generated by a random process, was simulated for different flock size and fractal dimension. The drag coefficients resulting from LBM simulations were compared to theoretical results for Stokes flow. Finally, scenarios with moving particles were considered. First, the sedimentation of a single particle towards a plane wall was simulated and compared with measurements for validation. Secondly, the temporal sedimentation of a cluster of 13 particles was studied. Here, the primary particles were allowed to stick together and form agglomerates. This research will be the basis for further analysing agglomerate formation in laminar and turbulent flows.  相似文献   

5.
Dynamics of model-stabilized colloidal suspensions were investigated by the self-consistent particle simulation method (SC), a new simulation algorithm that takes into account the interaction between the particles and suspending fluid. In this method, the fluid-particle interaction is introduced self-consistently by combining the finite element method (FEM) for fluid motion with Brownian dynamics (BD) for particle dynamics. To validate the reliability of the proposed algorithm, the shear dynamics of the stable particle suspensions were investigated. Relative viscosity and microstructure as a function of dimensionless shear rate at different volume fractions were in good agreement with previous observations. The robustness of the method was also verified through numerical convergence test. The effect of the fluid-particle interaction was well represented in simulations of two model problems, pressure-driven channel flow and rotating Couette flow. Plug-shaped velocity profile was observed in pressure-driven channel flow, which arised from shear thinning behavior of the stable suspension. In rotating Couette flow, shear banded nonlinear flow profile was observed. Although full hydrodynamic interaction (HI) was not rigorously taken into account, it successfully captured the macroscopic structure-induced flow field. It also takes advantage of the geometrical adaptability of FEM and computational efficiency of BD. We expect this newly developed simulation platform to be useful and efficient for probing the complex flow dynamics of particle systems as well as for practical applications in the complex flow of complex fluids.  相似文献   

6.
Zhao Yu  Liang-Shih Fan   《Particuology》2010,8(6):539-543
The lattice Boltzmann method (LBM) has gained increasing popularity in the last two decades as an alternative numerical approach for solving fluid flow problems. One of the most active research areas in the LBM is its application in particle-fluid systems, where the advantage of the LBM in efficiency and parallel scalability has made it superior to many other direct numerical simulation (DNS) techniques. This article intends to provide a brief review of the application of the LBM in particle-fluid systems. The numerical techniques in the LBM pertaining to simulations of particles are discussed, with emphasis on the advanced treatment for boundary conditions on the particle-fluid interface. Other numerical issues, such as the effect of the internal fluid, are also briefly described. Additionally, recent efforts in using the LBM to obtain closures for particle-fluid drag force are also reviewed.  相似文献   

7.
During detachment of a viscous fluid extruded from a nozzle, a filament linking the droplet to the latter is formed. Under the effect of surface tension, the filament thins until pinch-off and final detachment of the droplet. In this paper, we study the effect of the presence of individual particles trapped in the filament on the detachment dynamics using granular suspensions of small volume fractions (??<?6 %). We show that even a single particle strongly modifies the detachment dynamics. The particle perturbs the thinning of the thread, and a large droplet of fluid around the particle is formed. This perturbation leads to an acceleration of the detachment of the droplet compared to the detachment observed for a pure fluid. We quantify this acceleration for single particles of different sizes and link it to similar observations for suspensions of small volume fractions. Our study also gives more insight into particulate effects on detachment of denser suspensions and allows to explain the accelerated detachment close to final pinch-off observed previously (Bonnoit et al. Phys Fluids 24(4):043304, 2012).  相似文献   

8.
A simulation algorithm was developed to predict the rheological properties of oblate spheroidal suspensions. The motion of each particle is described by Jeffery’s solution, which is then modified by the interactions between the particles. The interactions are considered to be short range and are described by results from lubrication theory and by approximating locally the spheroid surface by an equivalent spherical surface. The simulation is first tested on a sphere suspension, results are compared with known experimental and numerical data, and good agreement is found. Results are then presented for suspensions of oblate spheroids of two mean aspect ratios of 0.3 and 0.2. Results for the relative viscosity η r, normal stress differences N 1 and N 2 are reported and compared with the few available results on oblate particle suspensions in a hydrodynamic regime. Evolution of the orientation of the particles is also observed, and a clear alignment with the flow is found to occur after a transient period. A change of sign of N 1 from negative to positive as the particle concentration is increased is observed. This phenomenon is more significant as the particle aspect ratio increases. It is believed to arise from a change in the suspension microstructure as the particle alignment increases.  相似文献   

9.
The rheology of dilute, colloidal suspensions in polymeric suspending fluids can be studied with simultaneous dichroism and birefringence measurements. The dichroism provides a direct measure of the particle dynamics, but the birefringence is a composite property with independent contributions from the suspended particles and the polymer molecules. For suspensions where the contribution from the particles is significant, the composite birefringence must be decoupled in order to analyze the dynamics of the polymeric suspending fluid. A method to perform the decoupling is derived and then demonstrated through transient shear flow experiments with dilute suspensions ofFeOOH particles in semi-dilute, xanthan gum suspending fluids. The birefringence of the xanthan gum suspending fluid is calculated from experimental measurements of the composite birefringence and the dichroism of the suspension. To gather information on particle/polymer interactions, the calculated birefringence is compared to the birefringence of xanthan gum solutions containing no suspended particles and the dirchoism is compared to that of a suspension in a Newtonian fluid.  相似文献   

10.
介电泳分离是一种高效的微细颗粒分离技术,利用非均匀电场极化并操纵分离微流道中的颗粒. 柔性微粒在介电泳分离过程中同时受多种物理场、多相流和微粒变形等复杂因素的影响,仅用单一的计算方法对其进行模拟存在一定的难度,本文采用有限单元——格子玻尔兹曼耦合计算的方法处理这一难题.介观尺度的格子玻尔兹曼方法将流体看成由大量微小粒子组成,在离散格子上求解玻尔兹曼输运方程,易于处理多相流及大变形问题,特别适合模拟柔性颗粒在介电泳分离过程中的变形情况.另一方面,介电泳分离过程的模拟需求解流体、电场和微粒运动方程,计算量相当庞大,通过有限单元法求解介电泳力,提高计算效率.利用这种多尺度耦合计算方法,对一款现有的介电泳芯片分离过程进行了模拟.分析了微粒在电场作用下产生的介电泳力,揭示了介电泳力与电场变化率等因素之间的关系.对微粒运动轨迹及其变形的情况进行了研究,发现微粒的变形主要与流体剪切作用有关.这种多尺度耦合计算方法,为复杂微流体的计算提供了一种有效的解决方案.   相似文献   

11.
We have studied the dynamics of non-colloidal short fiber suspensions in bounded shear flow using the Stokesian dynamics simulation. Such particles make up the microstructure of many suspensions for which the macroscopic dynamics are not well understood. The effect of wall on the fiber dynamics is the main focus of this work. For a single fiber undergoing simple shear flow between plane parallel walls the period of rotation was compared with the Jeffrey’s orbit. A fiber placed close to the wall shows significant deviation from Jeffrey’s orbit. The fiber moving near a solid wall in bounded shear flow follows a pole-vaulting motion, and its centroid location from the wall is also periodic. Simulations were also carried out to study the effect of fiber–fiber interactions on the viscosity of concentrated suspensions.  相似文献   

12.
A mathematical model has been formulated based on the combined continuous and discrete particle method for investigating the sedimentation behaviour of microparticles in aqueous suspensions, by treating the fluid phase as continuous and the particles phase as discrete, thus allowing the behaviour of individual particles to be followed and the evolution of the structure of the particle phase to be investigated as a function of time. The model takes into account most of the prevailing forces acting on individual particles including van der Waals attractive, electrostatic repulsive, gravitational, Brownian, depletion, steric, contact and drag forces. A code has also been developed based on the model. This paper reports some preliminary modelling results of mono-dispersed microparticles settling in aqueous suspensions under various conditions. The results show the short time dynamics of the fluid phase, which has a similar order of magnitude to the particle phase. Such short time dynamics could bear significance to processes such as particle aggregation when their size becomes very small. Preliminary analyses of the results have also been carried out on the evolution of particle settling based on a newly proposed parameter, local normalised volume fraction (LNVF).  相似文献   

13.
An alternative approach to simulating arbitrarily shaped particles submersed in viscous fluid in two dimensions is proposed, obtained by adapting the velocity parameter of the equilibrium distribution function of a standard lattice Boltzmann method (LBM). Comparisons of exemplifying simulations to results in the literature validate the approach as well as the convergence analysis. Pressure fluctuations occurring in Ladd’s approach are greatly reduced. In comparison with the immersed boundary method, this approach does not require cost intensive interpolations. The parallel efficiency of LBM is retained. An intrinsic momentum transfer is observed during particle–particle collisions. To demonstrate the capabilities of the approach, sedimentation of particles of several shapes is simulated despite omitting an explicit particle collision model.  相似文献   

14.
A direct‐forcing immersed boundary‐lattice Boltzmann method (IB–LBM) is developed to simulate fluid–particle interaction problems. This method uses the pressure‐based LBM to solve the incompressible flow field and the immersed boundary method to handle the fluid–particle interactions. The pressure‐based LBM uses the pressure distribution functions instead of the density distribution functions as the independent dynamic variables. The main idea is to explicitly eliminate the compressible effect due to the density fluctuation. In the IB method, a direct‐forcing method is introduced to capture the particle motion. It directly computes an IB force density at each lattice grid from the differences between the pressure distribution functions obtained by the LBM and the equilibrium pressure distribution functions computed from the particle velocity. By applying this direct‐forcing method, the IB–LBM becomes a purely LBM version. Also, by applying the Gauss theorem, the formulas for computing the force and the torque acting on the particle from the flows are derived from the volume integrals over the particle volume instead of from the surface integrals over the particle surface. The order of accuracy of the IB–LBM is demonstrated on the errors of velocity field, wall stress, and gradients of velocity and pressure. As a demonstration of the efficiency and capabilities of the new method, sedimentation of a large number of spherical particles in an enclosure is simulated. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
The lattice Boltzmann method (LBM) is a useful technique for simulating multiphase flows and modeling complex physics. Specifically, we use LBM combined with a direct-forcing (DF) immersed boundary (IB) method to simulate fluid–particle interactions in two-phase particulate flows. Two grids are used in the simulation: a fixed uniform Eulerian grid for the fluid phase and a Lagrangian grid that is attached to and moves with the immersed particles. Forces are calculated at each Lagrangian point. To exchange numerical information between the two grids, discrete delta functions are used. The resulting DF IB-LBM approach is then successfully applied to a variety of reference flows, namely the sedimentation of one and two circular particles in a vertical channel, the sedimentation of one or two spheres in an enclosure, and a neutrally buoyant prolate spheroid in a Couette flow. This last application proves that the developed approach can be used also for non-spherical particles. The three forcing schemes and the different factors affecting the simulation (added mass effect, corrected radius) are also discussed.  相似文献   

16.
In this work, we study the high-frequency elastic modulus of aqueous suspensions made with two kinds of zirconium oxide particles, one commercially available and the other synthesized as monodisperse spheres. The effect of volume fraction of solid, ionic strength (sodium chloride as indifferent electrolyte) and particle geometry is taken into account in the study on this viscoelastic property of the suspensions. Frequency sweeps were performed at a fixed value of the applied shear-stress in order to obtain the frequency-limiting value of the elastic modulus by rheometrical methods. On the other hand, the high-frequency modulus is theoretically calculated independently by means of the models proposed by Buscall and co-workers, Wagner and Bergenholtz and co-workers, which correlate the interaction potential between particles with this rheological parameter. The approach to the interparticle potential is the extended DLVO theory, which considers the electrical repulsion between charged colloidal particles, the van der Waals attraction and the acid–base interaction that can be attractive or repulsive depending on the thermodynamic nature of the solid–liquid interface.  相似文献   

17.
A coupled numerical method for the direct numerical simulation of particle–fluid systems is formulated and implemented, resolving an order of magnitude smaller than particle size. The particle motion is described by the time-driven hard-sphere model, while the hydrodynamic equations governing fluid flow are solved by the lattice Boltzmann method (LBM). Particle–fluid coupling is realized by an immersed boundary method (IBM), which considers the effect of boundary on surrounding fluid as a restoring force added to the governing equations of the fluid. The proposed scheme is validated in the classical flow-around-cylinder simulations, and preliminary application of this scheme to fluidization is reported, demonstrating it to be a promising computational strategy for better understanding complex behavior in particle–fluid systems.  相似文献   

18.
Particle suspensions play an important role in many engineering applications, yet their behavior in a number of respects remains poorly understood. In conjunction with careful experiments, modeling and simulation of these systems can provide key insight into their complex behavior. However, these two‐phase systems pose the challenge of simultaneously, accurately, and efficiently capturing the complex geometric structure, kinematics, and dynamics of the particulate discrete phase and the discontinuities it introduces into the variables (e.g., velocity, pressure, density) of the continuous phase. To this end, a new conformal decomposition finite element method (CDFEM) is introduced for solid particles in a viscous fluid. The method is verified in several simple test problems that are representative of aspects of particle suspension behavior. In all cases, we find the CDFEM to perform accurately and efficiently leading to the conclusion that it forms a prime candidate for application to the full direct numerical simulation of particle suspensions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
Particle-level simulation has been employed to investigate rheology and microstructure of non-spherical particulate suspensions in a simple shear flow. Non-spherical particles in Newtonian fluids are modeled as three-dimensional clusters of neutrally buoyant, non-Brownian spheres linked together by Hookean-type constraint force. Rotne–Prager correction to velocity disturbance has been employed to account for far-field hydrodynamic interactions. An isolated rod-like particle in simple shear flow exhibits a periodic orientation distribution, commonly referred to as Jeffery orbit. Lubrication-like repulsive potential between clusters have been included in simulation of rod-like suspensions at various aspect ratios over dilute to semi-dilute volume fractions. Shear viscosity evaluated by orientation distribution qualitatively agrees with one obtained by direct computation of shear stress.  相似文献   

20.
We present data and predictive models for the shear rheology of suspended zeolite particles in polymer solutions. It was found experimentally that suspensions of zeolite particles in polymer solutions have relative viscosities that dramatically exceed the Krieger–Dougherty predictions for hard sphere suspensions. Our investigations show that the major origin of this discrepancy is due to the selective absorption of solvent molecules from the suspending polymer solution into zeolite pores. The effect raises both the polymer concentration in the suspending medium and the particle volume fraction in the suspension. Consequently, both the viscosity of the polymer solution and the particle contribution to the suspension viscosity are increased. We propose a predictive model for the viscosity of porous zeolite suspensions by incorporating a solvent absorption parameter, α, into the Krieger–Dougherty model. We experimentally determined the solvent absorption parameter by comparing viscosity data for suspensions of porous and nonporous MFI zeolite particles. Our results are in good agreement with the theoretical pore volume of MFI particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号