首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, a modified particle temperature model for concentrated suspensions is proposed, which allows for the shear-induced migration of particles. The migration is modelled by a convection–diffusion equation, derived from the particle mass and momentum conservation. The model is implemented in an unstructured finite volume method and is utilized to investigate the shear-induced particle migration in channel flow. The profiles and the evolution of the velocity, concentration and particle temperature along the channel are presented. The entrance lengths needed to reach a fully developed profile of the corresponding field variables are also checked against different averaged concentrations and different relative particle radii. Comparison with available experimental data is made whenever possible.  相似文献   

2.
Large-eddy simulation has been performed to investigate pilot-assisted pulverized-coal combustion in a weakly turbulent air jet. An advanced pyrolysis model, the chemical percolation devolatilization (CPD) model, has been incorporated into the LES framework to predict the local, instantaneous pyrolysis kinetics of coal particles during the simulation. Prediction on volatile species generation is thus improved, which provides an important initial condition for gas-phase volatile and solid-phase char combustion. For gas-phase combustion, the partially stirred reactor (PaSR) model is employed to model the combustion of volatile species, taking into account subgrid turbulence-chemistry interactions. For heterogeneous solid-phase char combustion, both the intrinsic chemical reaction on the internal surface of a char particle and the diffusion of gaseous oxidant through the film layer around the particle have been incorporated by using a kinetic/diffusion surface reaction model. The LES results show overall good agreements with experimental data. Sensitivity analysis has been performed to better understand the impact of parameter uncertainties on the LES results.  相似文献   

3.
A viscoelastic plastic model for suspension of small particles in polymer melts has been developed. In this model, the total stress is assumed to be the sum of stress in the polymer matrix and the filler network. A nonlinear viscoelastic model along with a yield criterion were used to represent the stresses in the polymer matrix and the filler network, respectively. The yield function is defined in terms of differential equations with an internal parameter. The internal parameter models the evolution of structure changes during floc rupture and restoration. The theoretical results were obtained for steady and oscillatory shear flow and compared with experimental data for particle filled thermoplastic melt. The experimental data included the steady state shear strress over a wide range of shear rates, the transient stress in a start up shear flow, stress relaxation after cessation of a steady state shear flow, the step shear and the oscillatory shear flow at various amplitudes.  相似文献   

4.
Recently Lee and Balachandar proposed analytically-based expressions for drag and lift coefficients for a spherical particle moving on a flat wall in a linear shear flow at finite Reynolds number. In order to evaluate the accuracy of these expressions, we have conducted direct numerical simulations of a rolling particle for shear Reynolds number up to 100. We assume that the particle rolls on a horizontal flat wall with a small gap separating the particle from the wall (L = 0.505) and thus avoiding the logarithmic singularity. The influence of the shear Reynolds number and the translational velocity of the particle on the hydrodynamic forces of the particle was investigated under both transient and the final drag-free and torque-free steady state. It is observed that the quasi-steady drag and lift expressions of Lee and Balachandar provide good approximation for the terminal state of the particle motion ranging from perfect sliding to perfect rolling. With regards to transient particle motion in a wall-bounded shear flow it is observed that the above validated quasi-steady drag and lift forces must be supplemented with appropriate wall-corrected added-mass and history forces in order to accurately predict the time-dependent approach to the terminal steady state. Quantitative comparison with the actual particle motion computed in the numerical simulations shows that the theoretical models quite effective in predicting rolling/sliding motion of a particle in a wall-bounded shear flow at moderate Re.  相似文献   

5.
Comparisons are made between the Advection–Diffusion Equation (ADE) approach for particle transport and the two-fluid model approach based on the PDF method. In principle, the ADE approach offers a much simpler way of calculating the inertial deposition of particles in a turbulent boundary layer than that based on the PDF approach. However the ADE equations that have recently been used are only strictly valid for a simple Gaussian process when particle inertia is small. Using a prescribed, but in general non-Gaussian random particle velocity field, it is shown that the net particle mass flux contains a drift term in addition to that from the mean velocity of the particle velocity field, associated with the compressibility of the velocity field. Furthermore the diffusive flux in general depends not only upon the gradient of the mean concentration (true only for a Gaussian random flow field) but also upon higher order derivatives whose relative contribution depends on diffusion coefficients Dijk… etc. These coefficients depend upon the statistical moments associated with random displacements and compressibility of the particle flow field along particle trajectories which in turn depend upon particle inertia. In contrast the PDF approach offers the advantage of using a simple gradient (Gaussian) approximation in particle phase space which can lead to a non-Gaussian spatial dispersion process when particle inertia is important. Conditions based on the particle mean free path are derived for which a simple ADE is appropriate. Some of the features of particle transport in an inhomogeneous turbulent flow are illustrated by examining particle dispersion in a random flow field composed of pairs of counter rotating vortices which has an rms velocity which increase linearly from a stagnation point.  相似文献   

6.
The purpose of the paper is to present a new principle and a new algorithm for the direct numerical simulation of particle interactions within a turbulent flow. This approach has been developed in order to be able to compute agglomeration kernels with a numerical method which can still be applied at reasonable costs for very small colloidal particles. In this paper, classical algorithms are first tested and analyzed. They are shown to yield correct results but to require the use of time steps that are so small that they become intractable for colloidal particles. Their direct applications using large steps with respect to the relaxation time scale of the smallest particles reveal drastic errors that increase with the time step and with decreasing particle diameters. The new principle introduces the notion of continuous relative trajectories between possible collision partners and evaluates the exact probability for this trajectory to reach the minimum distance where two particles actually collide. Based on this new physical point of view and on the use of a probabilistic approach, a novel algorithm has been devised and numerical outcomes confirm that accurate predictions for the collision kernel are obtained independently of the particle diameter and for very large time steps. It is believed that the present ideas open interesting possibilities for the simulation of particle interactions over a whole range of particle behavior, from a ballistic to a diffusive regime, and can be extended to take into account new phenomena. Although present developments arise in the context of a numerical study, the new ideas that are introduced in this paper rely on the use of continuous stochastic bridges and, in that respect, propose a new approach to address physical issues of two-phase flow modeling.  相似文献   

7.
A robust airfoil optimization platform is constructed based on the modified particle swarm optimization method (i.e., the second-order oscillating particle swarm method), which consists of an efficient optimization algorithm, a precise aerodynamic analysis program, a high accuracy surrogate model, and a classical airfoil parametric method. There are two improvements for the modified particle swarm method compared with the standard particle swarm method. First, the particle velocity is represented by the combination of the particle position and the variation of position, which makes the particle swarm algorithm a second-order precision method with respect to the particle position. Second, for the sake of adding diversity to the swarm and enlarging the parameter searching domain to improve the global convergence performance of the algorithm, an oscillating term is introduced to the update formula of the particle velocity. At last, taking two airfoils as examples, the aerodynamic shapes are optimized on this optimization platform. It is shown from the optimization results that the aerodynamic characteristic of the airfoils is greatly improved in a broad design range.  相似文献   

8.
Diffusion in pore fractals: A review of linear response models   总被引:2,自引:0,他引:2  
A major aspect of describing transport in heterogeneous media has been that of relating effective diffusivities to the topological properties of the medium. While such effective transport coefficients may be useful for mass fractals or under steady state conditions, they are not adequate under transient conditions for self-similar pore fractal media. In porous formations without scale, diffusion is anomalous with the mean-squared displacement of a particle proportional to time raised to a fractional exponent less than unity. The objective of this review is to investigate the nature of the laws of diffusion in fractal media using the framework of linear response theory of nonequilibrium statistical mechanics. A Langevin/Fokker-Planck approach reveals that the particle diffusivity depends on its age defined as the time spent by the particle since its entry into the medium. An analysis via generalized hydrodynamics describes fractal diffusion with a frequency and wave number dependent diffusivity.  相似文献   

9.
A class of higher order compact (HOC) schemes has been developed with weighted time discretization for the two‐dimensional unsteady convection–diffusion equation with variable convection coefficients. The schemes are second or lower order accurate in time depending on the choice of the weighted average parameter μ and fourth order accurate in space. For 0.5?μ?1, the schemes are unconditionally stable. Unlike usual HOC schemes, these schemes are capable of using a grid aspect ratio other than unity. They efficiently capture both transient and steady solutions of linear and nonlinear convection–diffusion equations with Dirichlet as well as Neumann boundary condition. They are applied to one linear convection–diffusion problem and three flows of varying complexities governed by the two‐dimensional incompressible Navier–Stokes equations. Results obtained are in excellent agreement with analytical and established numerical results. Overall the schemes are found to be robust, efficient and accurate. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

10.
Kinesin-1 is a processive molecular motor that converts the energy from ATP hydrolysis and Brownian motion into directed movement. Single-molecule techniques have allowed the experimental characterization of single kinesins in vitro at a range of loads and ATP concentrations, and shown that each kinesin molecule moves processively along microtubules by alternately advancing each of its motor domains in a hand-over-hand fashion. Existing models of kinesin movement focus on time and space invariant loads, and hence are not well suited to describing transient dynamics. However, kinesin must undergo transient dynamics when external perturbations (e.g., interactions with other kinesin molecules) cause the load on each motor to change in time. We have developed a mechanistic model that describes, deterministically, the average motion of kinesin under time and space varying loads. The diffusion is modeled using a novel approach inspired by the classical closed form solution for the mean first-passage time. In the new approach, the potential in which the free motor domain diffuses is time varying and updated at each instant during the motion. The mechanistic model is able to predict experimental force-velocity data over a wide range of ATP concentrations (1 μM–10 mM). This mechanistic approach to modeling the mechanical behavior of the motor domains of kinesin allows rational and efficient characterization of the mechanochemical coupling, and provides predictions of kinesin with time-varying loads, which is critical for modeling coordinated transport involving several kinesin molecules.  相似文献   

11.
In the current work, the accuracy of the equilibrium Eulerian approach in evolving the particulate concentration field is evaluated by comparing it against the Lagrangian approach, for varying particle response time and terminal velocity. In particular, we compare the statistics of preferential accumulation and gravitational settling of particles in a cubic box of isotropic turbulence. Twelve simulations corresponding to four values of nondimensional particle response time, τp=0.05, 0.1, 0.2, 0.4, and three values of nondimensional terminal velocity, |Vs|=0.5,2,4 are considered. The equilibrium Eulerian approach obviates the need to solve additional governing equations for the particle velocity field. It, however, involves evolution of the particle concentration field using the equilibrium Eulerian velocity field. A spectral diffusion term is included in the particle concentration equation to provide an essentially non-oscillatory behavior to the solution. There is good agreement between the equilibrium Eulerian and Lagrangian statistics for small particles. With increasing particle size, the equilibrium Eulerian approach tends to somewhat overestimate particle preferential concentration in regions of excess strain-rate over rotation-rate compared to the Lagrangian approach. Over the entire range of parameters considered, the equilibrium approach provides a good approximation to the actual mean and rms fluctuating settling velocities of the particle.  相似文献   

12.
A two-fluid model of gas–solid particle flows that is valid for a wide range of the solid-phase volume concentration (dilute to dense) is presented. The governing equations of the fluid phase are obtained by volume averaging the Navier–Stokes equations for an incompressible fluid. The solid-phase macroscopic equations are derived using an approach that is based on the kinetic theory of dense gases. This approach accounts for particle–particle collisions. The model is implemented in a control-volume finite element method for simulations of the flows of interest in two-dimensional, planar or axisymmetric, domains. The chosen mathematical model and the proposed numerical method are applied to three test problems and one demonstration problem. © 1998 John Wiley & Sons, Ltd.  相似文献   

13.
14.
This paper proposes a systematic method, inte-grating the uniform design(UD)of experiments and quantum-behaved particle swarm optimization(QPSO),to solve the problem of a robust design for a railway vehicle suspension system. Based on the new nonlinear creep model derived from combining Hertz contact theory, Kalker's linear the-ory and a heuristic nonlinear creep model,the modeling and dynamic analysis of a 24 degree-of-freedom railway vehi-cle system were investigated.The Lyapunov indirect method was used to examine the effects of suspension parameters, wheel conicities and wheel rolling radii on critical hunting speeds.Generally,the critical hunting speeds of a vehicle sys-tem resulting from worn wheels with different wheel rolling radii are lower than those of a vehicle system having origi-nal wheels without different wheel rolling radii.Because of worn wheels, the critical hunting speed of a running rail-way vehicle substantially declines over the long term. For safety reasons,it is necessary to design the suspension sys-tem parameters to increase the robustness of the system and decrease the sensitive of wheel noises.By applying UD and QPSO,the nominal-the-best signal-to-noise ratio of the sys-tem was increased from?48.17 to?34.05 dB.The rate of improvement was 29.31%.This study has demonstrated that the integration of UD and QPSO can successfully reveal the optimal solution of suspension parameters for solving the robust design problem of a railway vehicle suspension sys-tem.  相似文献   

15.
Several Continuous Random Walk (CRW) models were constructed to predict turbulent particle diffusion based on Eulerian statistics that can be obtained with Reynolds-Averaged Navier Stokes (RANS) solutions. The test conditions included a wide range of particle inertias (Stokes numbers) with a near-wall injection (y+ = 4) in a turbulent boundary layer that is strongly anisotropic and inhomogeneous. To assess the performance of the models, the CRW results were compared to particle diffusion statistics gathered from a Direct Numerical Simulation (DNS). In particular, comparisons were made with transverse concentration profiles, root-mean-square of particle trajectory coordinates, and mean transverse particle velocity away from the wall.The results showed that accurate simulation required a modified (non-dimensionalized) Markov chain to handle the large gradients in turbulence near the wall as shown by simulations with fluid-tracer particles. For finite-inertia particles, an incremental drift correction for the Markov chain developed herein to account for Stokes number effects was critical to avoiding non-physical particle collection in low-turbulence regions. In both cases, inclusion of anisotropy in the turbulence model was found to be important, but the influence of off-diagonal terms was found to be weak. The results were generally good, especially for long-time and large inertia particles.  相似文献   

16.
The present paper points out that all existing laser-Doppler anemometer systems do not only operate within a finite range of Doppler frequencies but also work within a relatively narrow range of signal amplitudes. It is shown that this corresponds to a finite, and usually to an extremely small, range of particle diameters which contributes to the final LDA measurements. Because of this, the particle size distribution has to be matched to the LDA-system used for measuring particle velocities. If this is not taken into account in particle seeding, low data rates will result in spite of very high particle passage rates through the measuring control volume. This is shown experimentally and is supported by theoretical considerations.The present investigation results in conclusions regarding optimum particle size distributions for laser-Doppler anemometry. If fluid velocity measurements are attempted rather than particle velocity measurements, the particles still have to satisfy well known size requirements that are flow, fluid and particle density dependent.The experimental study employs a combined optical system for simultaneous measurements of particle velocity, particle size and particle concentration. The system is used to measure those particles of a spectrum of oil droplets that contribute to the validated signal output of counter and transient recorder based LDA-electronic signal processing systems.  相似文献   

17.
Continuum equations for a two-phase fluid-particle flow are developed and applied to the problem of steady, laminar flow over an infinite porous flat plate. Both phases are assumed to behave as non-Newtonian power-law fluids. The effects of particle-particle interaction and diffusion of particles are taken into account in the mathematical model. In addition, the particle phase is assumed to have a non-uniform density distribution. The resulting governing equations are nondimensionalized and solved numerically subject to appropriate boundary conditions using an iterative, implicit finite-difference method. Graphical results for the displacement thicknesses and the skin-friction coefficients for both the fluid and particle phases are presented and discussed to elucidate interesting features of the solutions.  相似文献   

18.
The transmission fluctuations can be used for measurements on particle size and particle concentration in multiphase flows. In Gregory’s method, the beam diameter is required to be much larger than the particle diameter, which limits the application seriously. In this work, we introduce a new method of the transmission fluctuation measurement, in which the beam diameter can be less, equal to and larger than the particle diameter. The theoretical analysis proves that, when the beam-to-particle diameter ratio is within the range of 0.05 and 10, the new method is able to achieve satisfying measurement results. However, Gregory’s method is only suitable in the range of 5 and 10. Therefore, this new method enhances the transmission fluctuation measurements greatly.  相似文献   

19.
A new method for the simulation of the translational and rotational motions of a system containing a sedimenting particle interacting with a neutrally buoyant particle has been developed. The method is based on coupling the quasi-static Stokes equations for the fluid with the rigid body equations of motion for the particles. The Stokes equations are solved at each time step with the boundary element method. The stresses are then integrated over the surface of each particle to determine the resultant forces and moments. These forces and moments are inserted into the rigid body equations of motion to determine the translational and rotational motions of the particles. Unlike many other simulation techniques, no restrictions are placed on the shape of the particles. Superparametric boundary elements are employed to achieve accurate geometric representations of the particles. The simulation method is able to predict the local fluid velocity, resolve the forces and moments exerted on the particles, and track the particle trajectories and orientations.  相似文献   

20.
A new numerical method for particle tracking (Lagrangian particle advection) on 2‐D unstructured grids with triangular cells is presented and tested. This method combines key attributes of published methods, including streamline closure for steady flows and local mass conservation (uniformity preservation). The subgrid‐scale velocity reconstruction is linear, and this linear velocity field is integrated analytically to obtain particle trajectories. A complete analytic solution to the 2‐D system of ordinary differential equations (ODEs) governing particle trajectories within a grid cell is provided. The analytic solution to the linear system of locally mass‐conserving constraints that must be enforced to obtain the coefficients in the ODEs is also provided. Numerical experiments are performed to demonstrate that the new method has substantial advantages in accuracy over previously published methods and that it does not suffer from unphysical particle clustering. The method can be used not only in particle‐tracking applications but also as part of a semi‐Lagrangian advection scheme.Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号