首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In previous attempts of rational subgrid-scale (SGS) modeling by employing the Kolmogorov equation of filtered (KEF) quantities, it was necessary to assume that the resolved-scale second-order structure function is stationary. Forced isotropic turbulence is often used as a framework for establishing and validating such SGS models based on stationary restrictions, for it generates statistical stationary samples. However, traditional forcing method at low wavenumbers cannot provide an analytic form of forcing term for a complete KEF in physical space, which has been illustrated to be essential in the modeling of such SGS models. Thus, an alternative forcing method giving an analytic forcing term in physical space is needed for rational SGS modeling. Giving an analytic linear driving term in physical space, linearly forced isotropic turbulence should be considered an ideal theoretical framework for rational SGS modeling. In this paper, we demonstrate the feasibility of establishing a rational SGS model with stationary restriction based on linearly forced isotropic turbulence. The performance of this rational SGS model is validated. We, therefore, propose the use of linearly forced isotropic turbulence as a complement to free-decaying isotropic turbulence and low-wavenumber forced isotropic turbulence for SGS model validations.  相似文献   

2.
ODT (one-dimensional turbulence) simulations of particle-carrier gas interactions are performed in the jet flow configuration. Particles with different diameters are injected onto the centerline of a turbulent air jet. The particles are passive and do not impact the fluid phase. Their radial dispersion and axial velocities are obtained as functions of axial position. The time and length scales of the jet are varied through control of the jet exit velocity and nozzle diameter. Dispersion data at long times of flight for the nozzle diameter (7 mm), particle diameters (60 and 90 µm), and Reynolds numbers (10, 000–30, 000) are analyzed to obtain the Lagrangian particle dispersivity. Flow statistics of the ODT particle model are compared to experimental measurements. It is shown that the particle tracking method is capable of yielding Lagrangian prediction of the dispersive transport of particles in a round jet. In this paper, three particle-eddy interaction models (Type-I, -C, and -IC) are presented to examine the details of particle dispersion and particle-eddy interaction in jet flow.  相似文献   

3.
The mechanism of the response motion of a suspended particle to turbulent motion of its surrounding fluid is different according to size of turbulent eddies. The particle is dragged by the viscous force of large eddies, and meanwhile driven randomly by small eddies. Based on this understanding, the dispersion of a particle with finite size in a homogeneous isotropic turbulence is calculated in this study. Results show that there are two competing effects: when enhanced by the inertia of a particle, the long-term particle diffusivity is reduced by the finite size of the particle.  相似文献   

4.
5.
Comparisons are made between the Advection–Diffusion Equation (ADE) approach for particle transport and the two-fluid model approach based on the PDF method. In principle, the ADE approach offers a much simpler way of calculating the inertial deposition of particles in a turbulent boundary layer than that based on the PDF approach. However the ADE equations that have recently been used are only strictly valid for a simple Gaussian process when particle inertia is small. Using a prescribed, but in general non-Gaussian random particle velocity field, it is shown that the net particle mass flux contains a drift term in addition to that from the mean velocity of the particle velocity field, associated with the compressibility of the velocity field. Furthermore the diffusive flux in general depends not only upon the gradient of the mean concentration (true only for a Gaussian random flow field) but also upon higher order derivatives whose relative contribution depends on diffusion coefficients Dijk… etc. These coefficients depend upon the statistical moments associated with random displacements and compressibility of the particle flow field along particle trajectories which in turn depend upon particle inertia. In contrast the PDF approach offers the advantage of using a simple gradient (Gaussian) approximation in particle phase space which can lead to a non-Gaussian spatial dispersion process when particle inertia is important. Conditions based on the particle mean free path are derived for which a simple ADE is appropriate. Some of the features of particle transport in an inhomogeneous turbulent flow are illustrated by examining particle dispersion in a random flow field composed of pairs of counter rotating vortices which has an rms velocity which increase linearly from a stagnation point.  相似文献   

6.
A method is proposed which can facilitate parallel computations of particle transport in complex environments, such as urban landscapes. A two stage‐approach is used, where in the first stage, physical simulations of various aerosol release scenarios are conducted on a high‐performance distributed computing facility, such as a Beowulf cluster or a computing grid, and stored in a database as a set of transfer probabilities. In this stage, the method provides a partially decoupled parallel implementation of a tightly coupled physical system. In the second stage, various aerosol release scenarios can be analysed in a timely manner, using obtained probability distributions and a simpler stochastic simulator, which can be executed on a commodity computer, such as a workstation or a laptop. The method presents a possibility of solving the inverse problem of determining the release source from the available deposition data. Using the proposed approach and developed graphical tools, a case of aerosol dispersion in a typical urban landscape has been studied. A considerable speedup of analysis time for different aerosol dispersion scenarios has been demonstrated. The method is appropriate for the development of express risk analysis systems. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

7.
8.
The absence of sub-grid scale (SGS) motions leads to severe errors in particle pair dynamics, which represents a great challenge to the large eddy simulation of particle-laden turbulent flow. In order to address this issue, data from direct numerical simulation (DNS) of homogenous isotropic turbulence coupled with Lagrangian particle tracking are used as a benchmark to evaluate the corresponding results of filtered DNS (FDNS). It is found that the filtering process in FDNS will lead to a non-monotonic variation of the particle collision statistics, including radial distribution function, radial relative velocity, and the collision kernel. The peak of radial distribution function shifts to the large-inertia region due to the lack of SGS motions, and the analysis of the local flowstructure characteristic variable at particle position indicates that the most effective interaction scale between particles and fluid eddies is increased in FDNS. Moreover, this scale shifting has an obvious effect on the odd-order moments of the probability density function of radial relative velocity, i.e. the skewness, which exhibits a strong correlation to the variance of radial distribution function in FDNS. As a whole, the radial distribution function, together with radial relative velocity, can compensate the SGS effects for the collision kernel in FDNS when the Stokes number based on the Kolmogorov time scale is greater than 3.0. However, it still leaves considerable errors for \({ St}_\mathrm{k }<3.0\).  相似文献   

9.
The state of fibres suspended in a turbulent fluid is described in terms of a probability distribution function of fibre orientation and position throughout the suspending fluid. The evolution of the fibre's probability distribution function is governed by a convection–dispersion equation, where the randomizing effect of the turbulence is modelled by rotational and translational dispersion coefficients. To estimate these coefficients a numerical simulation of fibres moving in a turbulent fluid was developed. The trajectory of an ensemble of inertialess, rigid, thin, free-draining fibres was calculated through a stochastic model of homogeneous, isotropic turbulence. The results of the simulation were compared with analytical estimates and were found to provide reasonable agreement over a wide range of fibre length. However, the simulation showed that the Lagrangian integral time scale for rotation was significantly smaller than for translation and the ratio of rotational to translational Lagrangian time scales was smaller than the ratio of Eulerian time scales. The simulation also showed that the Lagrangian velocity correlation increased as fibre length increased and that the temporal correlations approached the analytical estimates of the Eulerian correlations in the limit of long fibres.  相似文献   

10.
We present the first measurements of relative velocity statistics of inertial particles in a homogeneous isotropic turbulent flow with three-dimensional holographic particle image velocimetry (holographic PIV). From the measurements we are able to obtain the radial relative velocity probability density function (PDF) conditioned on the interparticle separation distance, for distances on the order of the Kolmogorov length scale. Together with measurements of the three-dimensional radial distribution function (RDF) in our turbulence chamber, these statistics, in principle, can be used to determine interparticle collision rates via the formula derived by Sundaram and Collins (1997). In addition, we show temporal development of the RDF, which reveals the existence of an extended quasi-steady-state regime in our facility. Over this regime the measured two-particle statistics are compared to direct numerical simulations (DNS) with encouraging qualitative agreement. Statistics at the same Reynolds number but different Stokes numbers demonstrate the ability of the experiment to correctly capture the trends associated with particles of different inertia. Our results further indicate that even at moderate Stokes numbers turbulence may enhance collision rates significantly. Such experimental investigations may prove valuable in validating, guiding and refining numerical models of particle dynamics in turbulent flows.  相似文献   

11.
The structure of the intense vorticity regions is studied in numerically simulated homogeneous, isotropic, equilibrium turbulent flow fields at four different Reynolds numbers, in the rangeRe =35–170, and is found to be organized in coherent, cylindrical or ribbon-like, vortices (worms). At the Reynolds numbers studied, they are responsible for much of the extreme intermittent tails observed in the statistics of the velocity gradients, but their importance seems to decrease at higherRe . Their radii scale with the Kolmogorov microscale and their lengths with the integral scale of the flow, while their circulation increases monotonically withRe . An explanation is offered for this latter scaling, based in the assumed presence of axial inertial waves along their cores, excited by a random background strain of the order of the root mean square vorticity. This explanation is consistent with the presence of comparable amounts of stretching and compression along the vortex cores.
Sommario La struttura di regioni ad intensa vorticità in campi di flusso turbolento omogenei, isotropi ed in equilibrio, simulati numericamente, viene studiata per quattro differenti numeri di Reynolds nell'intervalloRe =35÷170, e si trova che tali regioni si organizzano in vortici coerenti, cilindrici o a forma di nastro (vermi). Con rifermento ai numeri di Reynolds studiati, si vede che tali vortici sono responsabili per gran parte delle code estreme ed intermittenti, osservate nelle statistiche dei gradienti di velocità, ma la loro importanza sembra decrescere a più altiRe . I loro raggi scalano con la microscala di Kolmogorov e le loro lunghezze con la scala integrale del flusso, mentre la loro circolazione cresce monotonicamente conRe . Per quest'ultimo riscalamento viene offerta una spiegazione basata sull'assunzione della presenza di onde inerziali assiali lungo i loro nuclei, eccitate da una deformazione di fondo casuale dell'ordine della radice quadrata della velocità media. Questa spiegazione è consistente con la presenza di incrementi paragonabili di allungamenti e compressioni lungo i nuclei dei vortici.
  相似文献   

12.
This work examines in detail the coupling mechanism between a stationary, homogeneous and isotropic turbulent (HIT) flow and particles, including the effect of particle-particle collisions. In order to illustrate how the physics can be elucidated of four-way interactions, a series of coupled Direct Numerical Simulations (DNS) of forced HIT are performed on a 1283 periodic box at two Taylor Reynolds numbers, 35.4 and 58.0, with interacting particles of different global Stokes numbers and volume fractions. The results show that fluid dissipation decreases up to 32% with increasing global Stokes numbers and particle volume fractions. Moreover, the corresponding dissipation when ignoring particle-particle collisions is over-estimated by up to 7% compared to the fully coupled simulations. A spectral analysis of the coupling mechanism reveals that the particles transfer energy from the large to the small scales, thereby explaining the difference in dissipation. Finally, a model spectrum for the coupling between the turbulent fluid and the particles is proposed.  相似文献   

13.
In the current work, the accuracy of the equilibrium Eulerian approach in evolving the particulate concentration field is evaluated by comparing it against the Lagrangian approach, for varying particle response time and terminal velocity. In particular, we compare the statistics of preferential accumulation and gravitational settling of particles in a cubic box of isotropic turbulence. Twelve simulations corresponding to four values of nondimensional particle response time, τp=0.05, 0.1, 0.2, 0.4, and three values of nondimensional terminal velocity, |Vs|=0.5,2,4 are considered. The equilibrium Eulerian approach obviates the need to solve additional governing equations for the particle velocity field. It, however, involves evolution of the particle concentration field using the equilibrium Eulerian velocity field. A spectral diffusion term is included in the particle concentration equation to provide an essentially non-oscillatory behavior to the solution. There is good agreement between the equilibrium Eulerian and Lagrangian statistics for small particles. With increasing particle size, the equilibrium Eulerian approach tends to somewhat overestimate particle preferential concentration in regions of excess strain-rate over rotation-rate compared to the Lagrangian approach. Over the entire range of parameters considered, the equilibrium approach provides a good approximation to the actual mean and rms fluctuating settling velocities of the particle.  相似文献   

14.
The spectral function of isotropic turbulence is obtained on the basis of semi-empirical turbulence theory.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 161–164, November–December, 1974.  相似文献   

15.
We present a remeshed particle‐mesh method for the simulation of three‐dimensional compressible turbulent flow. The method is related to the meshfree smoothed particle hydrodynamics method, but the present method introduces a mesh for efficient calculation of the pressure gradient, and laminar and turbulent diffusion. In addition, the mesh is used to remesh (reorganise uniformly) the particles to ensure a regular particle distribution and convergence of the method. The accuracy of the presented methodology is tested for a number of benchmark problems involving two‐ and three‐dimensional Taylor‐Green flow, thin double shear layer, and three‐dimensional isotropic turbulence. Two models were implemented, direct numerical simulations, and Smagorinsky model. Taking advantage of the Lagrangian advection, and the finite difference efficiency, the method is capable of providing quality simulations while maintaining its robustness and versatility.  相似文献   

16.
The present paper deals with the turbulent flow of an incompressible, viscous and conducting fluid which is isotropic, spatially homogeneous. The expression for acceleration covariance is derived. The obtained result shows that the defining scalars α(r, t) and β(r, t) of the acceleration covariance in MHD turbulence depend on the defining scalars of Q ij , H ij , Π ij and S ik, j .  相似文献   

17.
Direct numerical simulations were conducted to investigate the behavior of heavy particles in homogeneous isotropic turbulence. The present study focused on the effect of particle inertia and drift on the autocorrelations of the particle velocity and the fluid seen by particles and the dispersion characteristics of particles. The Lagrangian integral time scale of particles monotonically increased as the magnitude of the particle response time increased, while that of the fluid seen by particles remained relatively constant; it reached a maximum when the particle response time was close to the Kolmolgorov time scale of the flow. Particle dispersion increased as the particle inertia increased for small particles, while for larger particles, it decreased as particle inertia increased; particle eddy diffusion coefficient was maximal, and greater than that of the fluid by about 30%, at the preferential concentration. The concentration field of the particles with τp/τk≈1.0 showed that particles tend to collect in regions of low vorticity (high strain) due to preferential concentration. As the drift velocity of a particle is increased it crosses the paths of fluid elements more rapidly and will tend to lose correlation with its previous velocity faster than a fluid element will. And the correlation of particle velocities along the drift direction is more persistent than that perpendicular to the direction of drift. Simulations also showed that the continuity effect and the crossing-trajectory effect are weakened for particles with infinite inertia.  相似文献   

18.
Direct numerical simulation (DNS) and experimental data have shown that inertial particles exhibit concentration peaks in isothermal turbulent boundary layers, whereas tracer-like particles remain well mixed in the domain. It is therefore expected that the interactions between turbulence and thermophoresis will be strong in particle-laden flows where walls and carrier fluid are at significantly different temperatures. To capture turbulent particle dispersion with active thermophoresis, a coupled CFD-Lagrangian continuous random walk (CRW) model is developed. The model uses 3D mean flow velocities obtained from the Fluent 6.3 CFD code, to which are added turbulent fluid velocities derived from the normalized Langevin equation which accounts for turbulence inhomogeneities. The mean thermophoretic force is included as a body force on the particle following the Talbot formulation. Validation of the model is performed against recent integral thermophoretic deposition data in long pipes as well as the TUBA TT28 test with its detailed local deposition measurements. In all cases, the agreement with the data is very good. In separate parametric studies in a hypothetical cooled channel flow, it is found that turbulence strongly enhances thermophoretic deposition of particles with dimensionless relaxation times τ+ of order 1 or more. On the other hand, the thermophoretic deposition of very small inertia particles (τ+ < 0.2) in the asymptotic region far from the injection point tends to that which characterizes stagnant flow conditions, in agreement with the DNS results of Thakurta et al.  相似文献   

19.
The paper concerns the effect of particle inertia on acceleration statistics. A simple analytical model for predicting the acceleration of heavy particles suspended in an isotropic homogeneous turbulent flow field is developed. This model is capable of describing the influence of both Stokes and Reynolds numbers on the particle acceleration variance. Comparisons of model predictions with numerical simulations are presented.  相似文献   

20.
A theoretical method based on mathematical physics formalism that allows transposition of turbulence modeling methods from URANS (unsteady Reynolds averaged Navier–Stokes) models, to multiple-scale models and large eddy simulations (LES) is presented. The method is based on the spectral Fourier transform of the dynamic equation of the two-point fluctuating velocity correlations with an extension to the case of non-homogenous turbulence. The resulting equation describes the evolution of the spectral velocity correlation tensor in wave vector space. Then, we show that the full wave number integration of the spectral equation allows one to recover usual one-point statistical closure whereas the partial integration based on spectrum splitting gives rise to partial integrated transport models (PITM). This latter approach, depending on the type of spectral partitioning used, can yield either a statistical multiple-scale model or subfilter transport models used in LES or hybrid methods, providing some appropriate approximations are made. Closure hypotheses underlying these models are then discussed by reference to physical considerations with emphasis on identification of tensorial fluxes that represent turbulent energy transfer or dissipation. Some experiments such as the homogeneous axisymmetric contraction, the decay of isotropic turbulence, the pulsed turbulent channel flow and a wall injection induced flow are then considered as typical possible applications for illustrating the potentials of these models.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号