首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Three new aza-BODIPY dyes incorporating fused fluorene or carbazole moieties have been prepared. The dyes show significant enhancement of photophysical properties compared to the parent 1,3,5,7-tetraphenyl aza-BODIPY (TPAB): a bathochromic shift of the absorption maximum (up to 2700 cm−1) and emission maximum (up to 2270 cm−1); an almost threefold increase in molar absorption coefficients (to ca. 230 000 M−1 cm−1) and a significant increase in the fluorescence quantum yield to 49–66 %. Owing to the combination of these properties, the new aza-BODIPY dyes belong to the brightest NIR dyes reported. The dyes also show excellent photostability. Due to their outstanding properties, the new dyes represent a promising platform for further exploration in biomedical research. A pH indicator containing only one fused carbazole unit was also prepared and shows absorption and emission spectra that are bathochromically shifted by about 110 and 100 nm, respectively, compared to the indicator dye based on the TPAB chromophore.  相似文献   

2.
Five-membered-ring fused BODIPYs and aza-BODIPY were herein prepared. X-ray crystallographic analysis revealed that the core skeleton of six-membered-ring fused BODIPY is nonplanar but twisted. Such five-membered-ring fused BODIPY/aza-BODIPY dyes have long wavelength absorptions/emissions, high extinction coefficients, peak fluorescence and narrow excitations/emissions. MO calculations well supported and explained the same absorption maxima between BODIPY bearing the five-membered ring and BODIPY bearing the six-membered ring.  相似文献   

3.
《中国化学快报》2022,33(1):115-122
The typical aza-BODIPYs in the dye family are known for bright fluorescence, excellent stability, and tunable absorption wavelengths. Hence, these dyes are attracting the increasing attention. Aza-BODIPYs having the maxima absorption in the near-infrared (NIR) region (650–900 nm) are very favorable for bioimaging in vivo due to the less photo-damage, deeper tissue penetration, and less interference from background auto-fluorescence by biomolecules in the living systems. Many strategies have been employed to modify the structures of the aza-BODIPY core to provide the NIR absorbing dyes. Among these, the most effective method is the fusion of the aromatic rings in aza-BODIPY system. This review allsidedly summarizes the recent development of ring-fused aza-BODIPY dyes (λabs > 700 nm) focusing on the design, synthesis, and potential applications in the NIR region since 2002.  相似文献   

4.
Aurore Loudet 《Tetrahedron》2008,64(17):3642-3654
Fluorescent molecules that emit in the near infrared are potentially useful as probes for biotechnology. A relatively under-explored design for probes of this type are the aza-BODIPY dyes; this study was performed to enhance our understanding of these materials and ways in which they may be used in dye cassette systems. Thus, the aza-BODIPY dyes 1a-g were prepared. An advanced intermediate toward an eighth compound in the series, 6h, was made but it could not be complexed with boron effectively to give 1h. Spectroscopic properties of these compounds were recorded, and correlations between substituent effects, UV absorbance, fluorescence emissions, and quantum yields were made. Compound 1a was coupled with a fluorescein-alkyne derivative to give the energy transfer cassettes 2 and 3. Both these compounds gave poor energy transfer and the possible reasons for this were discussed.  相似文献   

5.
Aza-boron dipyrromethenes (aza-BODIPYs) presenting a benzothiadiazole substitution on upper positions are described. The strong electron-withdrawing effect of the benzothiadiazole moiety permits enhancement of the accepting strength and improves the delocalization of the aza-BODIPY core to attain a significant degree of electronic communication between the lower donating groups and the upper accepting groups. The nature of the intramolecular charge transfer is studied both experimentally and theoretically. Linear spectroscopy highlighted the strongly redshifted absorption and emission of the synthesized molecules with recorded fluorescence spectra over 1000 nm. Nonlinear optical properties were also investigated. Strong enhancement of the two-photon absorption of the substituted dyes compared with the unsubstituted one (up to 4520 GM at 1300 nm) results in an approximately 15–20 % improvement of the optical power limiting performances. These dyes are therefore a good starting point for further improvement of optical power limiting in the short-wave IR range.  相似文献   

6.
Synthesis of the C(8) BODIPY monomers, dimers, and trimers, a C(8) polymer, and N(8) aza-BODIPY monomer and dimer was carried out. Methyl and mesityl C(8)-substituted monomers, dimers, and trimers were used. Dimers, trimers, and polymer were formed chemically through the β-β (2/6) positions by oxidative coupling using FeCl(3). A red shift of the absorbance and fluorescence is observed with addition of monomer units from monomer to polymer for C(8) dyes. The aza-BODIPY dye shows red-shifted absorbance and fluorescence compared with the C(8) analogue. Cyclic voltammetry shows one, two, and three one-electron waves on both reduction and oxidation for the monomer, dimer, and trimer, respectively, for the C(8) BODIPYs. The separation for the reduction peaks for the C(8) dimers is 0.12 V compared with 0.22 V for the oxidation, while the trimers show separations of 0.09 V between reduction peaks and 0.13 V for oxidation peaks. The larger separations between the second and third peaks, 0.25 V for the oxidation and 0.2 V for the reduction, are consistent with a larger energy to remove or add a third electron compared with the second one. The BODIPY polymer shows the presence of many sequential one-electron waves with a small separation. These results provide evidence for significant electronic interactions between different monomer units. The aza-BODIPY dye shows a reduction peak 0.8 V more positive compared to the C(8) compound. Aza-BODIPY dimer shows the appearance of four waves in dichloromethane. The separation between two consecutive waves is around 0.12 V for reduction compared with 0.2 V for oxidation, which is comparable with the results for the C(8) dyes. Electrogenerated chemiluminescence (ECL) of the different species was obtained, including weak ECL of the polymer.  相似文献   

7.
The 2-formyl 1,3,5,7-tetraaryl aza-BODIPY and 2-formyl-6-bromo 1,3,5,7-tetraaryl aza-BODIPY were subjected to Wittig reaction with three different ylides under simple reaction conditions and afforded the conjugated aza-BODIPYs in high yields. The aza-BODIPYconjugates resulted from 2-formyl-6-bromo aza-BODIPYs were reacted further with 4-anisyl boronic acid under mild Pd(0) coupling conditions and afforded 1,2,3,5,7-pentaaryl aza-BODIPYconjugates. The method works efficiently and allows to introduce different substituents at the aza-BODIPY core. All compounds were characterized by HRMS, 1D, 2D NMR, absorption, fluorescence and electrochemical techniques. The spectral and electrochemical studies indicated that the introduction of conjugated substituents at the aza-BODIPY core alter the electronic properties significantly.  相似文献   

8.
Novel fluorescent, conformationally restricted dipyrromethene boron difluoride (BODIPY) dyes have been prepared by introducing a naphthalenyl group at the meso position of the BODIPY core. These BODIPY dyes exhibit increased fluorescence quantum yields compared with dyes that have a meso-position phenyl group with internal rotation. The absorption and emission wavelengths of such conformationally restricted BODIPY dyes can be easily tuned to the near-IR range by derivatization through a condensation reaction with benzaldehyde derivatives. The two-photon absorption properties of these BODIPY dyes were also investigated and the results show that they exhibit increased two-photon excited fluorescence compared to analogue dyes that contain a phenyl group. The one- and two-photon fluorescence imaging of living cells by using selected BODIPY dyes has been successfully demonstrated.  相似文献   

9.
A series of novel thiophene-substituted aza-BODIPY dyes were synthesized by means of a standard procedure and complemented by a Stille-coupling of a brominated species with 2-tributylstannylthiophene. The optical as well as the electrochemical properties of the compounds were investigated and compared to result of density functional theory (DFT) calculations. The influence of the thiophene substituents is discussed in dependence of the position at the aza-BODIPY core regarding the HOMO and LUMO frontier orbitals. The different distributions of the HOMO and LUMO coefficients over the BODIPY core lead to a variable influence of the thiophene substituents on the HOMO and LUMO energies, being the origin of the tunable optical and electrochemical properties.  相似文献   

10.
Triphenylmethane (TPM) dyes normally render rather weak fluorescence due to easy vibrational deexcitation. However, when they stack onto the two external G-quartets of a G-quadruplex (especially intramolecular G-quadruplex), such vibrations will be restricted, resulting in greatly enhanced fluorescence intensities. Thus, TPM dyes may be developed as sensitive G-quadruplex fluorescent probes. Here, fluorescence spectra and energy transfer spectra of five TPM dyes in the presence of G-quadruplexes, single- or double-stranded DNAs were compared. The results show that the fluorescence spectra of four TPM dyes can be used to discriminate intramolecular G-quadruplexes from intermolecular G-quadruplexes, single- and double-stranded DNAs. The energy transfer fluorescence spectra and energy transfer fluorescence titration can be used to distinguish G-quadruplexes (including intramolecular and intermolecular G-quadruplexes) from single- and double-stranded DNAs. Positive charges and substituent size in TPM dyes may be two important factors in influencing the binding stability of the dyes and G-quadruplexes.  相似文献   

11.
The search for long-lived red and NIR fluorescent dyes is challenging and hitherto scarcely reported. Herein, the viability of aza-BODIPY skeleton as a promising system for achieving thermal activated delayed fluorescent (TADF) probes emitting in this target region is demonstrated for the first time. The synthetic versatility of this scaffold allows the design of energy and charge transfer cassettes modulating the stereoelectronic properties of the energy donors, the spacer moieties and the linkage positions. Delayed emission from these architectures is recorded in the red spectral region (695–735 nm) with lifetimes longer than 100 μs in aerated solutions at room temperature. The computational-aided photophysical study under mild and hard irradiation regimes disclose the interplay between molecular structure and photonic performance to develop long-lived fluorescence red emitters through thermally activated reverse intersystem crossing. The efficient and long-lasting NIR emission of the newly synthesized aza-BODIPY systems provides a basis to develop advanced optical materials with exciting and appealing photonic response.  相似文献   

12.
In the orignial 1,3,5,7-tetraphenyl aza-BODIPY, replacing the phenyl rings with thiophene achieved significant bathochromic shifts. One of the target molecules, DPDTAB, emitting strong NIR fluorescence with a quantum yield of 0.46 in acetonitrile, is a very competitive NIR fluorophore.  相似文献   

13.
Developing molecular fluorophores with enhanced fluorescence in aggregate state for the second near-infrared (NIR-II) imaging is highly desirable but remains a tremendous challenge due to the lack of reliable design guidelines. Herein, we report an aromatic substituent strategy to construct highly bright NIR-II J-aggregates. Introduction of electron-withdrawing substituents at 3,5-aryl and meso positions of classic boron dipyrromethene (BODIPY) skeleton can promote slip-stacked J-type arrangement and further boost NIR-II fluorescence of J-aggregates via increased electrostatic repulsion and intermolecular hydrogen bond interaction. Notably, NOBDP-NO2 with three nitro groups (−NO2) shows intense NIR-II fluorescence at 1065 nm and high absolute quantum yield of 3.21 % in solid state, which can be successfully applied in bioimaging, high-level encoding encryption, and information storage. Moreover, guided by this electron-withdrawing substituent strategy, other skeletons (thieno-fused BODIPY, aza-BODIPY, and heptamethine cyanine) modified with −NO2 are converted into J-type aggregates with enhanced NIR-II fluorescence, showing great potential to convert aggregation caused emission quenching (ACQ) dyes into brilliant J-aggregates. This study provides a universal method for construction of strong NIR-II emissive J-aggregates by rationally manipulating molecular packing and establishing relationships among molecular structures, intermolecular interactions, and fluorescence properties.  相似文献   

14.
The synthesis of a novel aza-BODIPY dye functionalized with fused pyrazine rings, suitable for use as a selective colorimetric and fluorometric sensor for NH(4)(+), is outlined. In addition to significant fluorescence quenching, an obvious colorimetric change from green to red-pink is observed enabling facile "naked-eye" detection of NH(4)(+).  相似文献   

15.
Covalent attachment of solvent-sensitive fluorescent dyes to proteins is a powerful tool for studying protein conformational changes, ligand binding, or posttranslational modifications. We report here new merocyanine dyes that make possible the quantitation of such protein activities in individual living cells. The quantum yield of the new dyes is sharply dependent on solvent polarity or viscosity, enabling them to report changes in their protein environment. This is combined with other stringent requirements needed in a live cell imaging dye, including appropriate photophysical properties (excitation >590 nm, high fluorescence quantum yield, high extinction coefficient), good photostability, minimal aggregation in water, and excellent water solubility. The dyes were derivatized with iodoacetamide and succinimidyl ester side chains for site-selective covalent attachment to proteins. A novel biosensor of Cdc42 activation made with one of the new dyes showed a 3-fold increase in fluorescence intensity in response to GTP-binding by Cdc42. The dyes reported here should be useful in the preparation of live cell biosensors for a diverse range of protein activities.  相似文献   

16.
Near-infrared absorbing aza-BODIPYs with the naphthyl groups at 1,7-positions were prepared for the first time. The singlet oxygen generation of aza-BODIPY with the naphthyl groups at 1,7-positions was more effective than that of the corresponding aza-BODIPY with the phenyl groups at 1,7-positions.  相似文献   

17.
Short-wavelength (SW) fluorescence of some cyanine dyes caused by sequential two-photon excitation was studied. The fluorescence quantum yield of the SW fluorescence shows a significant dependence on the solvent viscosity, but only a small dependence on temperature. This reveals the dynamic character of the emitting state: much lower intramolecular barrier and larger solute-solvent viscous drag compared to the S1 state in the molecular conformational change which is important as a radiationless decay channel.  相似文献   

18.
A novel class of fluorescent dyes based on conformationally locked GFP chromophore is reported. These dyes are characterized by red‐shifted spectra, high fluorescence quantum yields and pH‐independence in physiological pH range. The intra‐ and intermolecular mechanisms of radiationless deactivation of ABDI‐BF2 fluorophore by selective structural locking of various conformational degrees of freedom were studied. A unique combination of solvatochromic and lipophilic properties together with “infinite” photostability (due to a dynamic exchange between free and bound dye) makes some of the novel dyes promising bioinspired tools for labeling cellular membranes, lipid drops and other organelles.  相似文献   

19.
The fast relaxation processes in the excited electronic states of functionalized aza-boron-dipyrromethene (aza-BODIPY) derivatives ( 1 – 4 ) were investigated in liquid media at room temperature, including the linear photophysical, photochemical, and nonlinear optical (NLO) properties. Optical gain was revealed for nonfluorescent derivatives 3 and 4 in the near infrared (NIR) spectral range under femtosecond excitation. The values of two-photon absorption (2PA) and excited-state absorption (ESA) cross-sections were obtained for 1–4 in dichloromethane using femtosecond Z-scans, and the role of bromine substituents in the molecular structures of 2 and 4 is discussed. The nature of the excited states involved in electronic transitions of these dyes was investigated using quantum-chemical TD-DFT calculations, and the obtained spectral parameters are in reasonable agreement with the experimental data. Significant 2PA (maxima cross-sections ∼2000 GM), and large ESA cross-sections ∼10−20 m2 of these new aza-BODIPY derivatives 1–4 along with their measured high photostability reveal their potential for photonic applications in general and optical limiting in particular.  相似文献   

20.
Fluorescence resonance energy transfer (FRET) is a distance-sensitive method that correlates changes in fluorescence intensity with conformational changes, for example, of biomolecules in the cellular environment. Applied to the gas phase in combination with Fourier transform ion cyclotron resonance mass spectrometry, it opens up possibilities to define structural/conformational properties of molecular ions, in the absence of solvent, and without the need for purification of the sample. For successfully observing FRET in the gas phase it is important to find suitable fluorophores. In this study several fluorescent dyes were examined, and the correlation between solution-phase and gas-phase fluorescence data were studied. For the first time, FRET in the gas phase is demonstrated unambiguously.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号