首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel tyrosinase biosensor based on hydroxyapatite nanoparticles (nano-HA)-chitosan nanocomposite has been developed for the detection of phenolic compounds. The uniform and size controlled nano-HA was synthesized by hydrothermal method, and its morphological characterization was examined by transmission electron microscope (TEM). Tyrosinase was then immobilized on a nano-HA-chitosan nanocomposite-modified gold electrode. Electrochemical impedance spectroscopy and cyclic voltammetry were used to characterize the sensing film. The prepared biosensor was applied to determine phenolic compounds by monitoring the reduction signal of the biocatalytically produced quinone species at −0.2 V (vs. saturated calomel electrode). The effects of the pH, temperature and applied potential on the biosensor performance were investigated, and experimental conditions were optimized. The biosensor exhibited a linear response to catechol over a wide concentration range from 10 nM to 7 μM, with a high sensitivity of 2.11 × 103 μA mM−1 cm−2, and a limit of detection down to 5 nM (based on S/N = 3). The apparent Michaelis-Menten constants of the enzyme electrode were estimated to be 3.16, 1.31 and 3.52 μM for catechol, phenol and m-cresol, respectively. Moreover, the stability and reproducibility of this biosensor were evaluated with satisfactory results.  相似文献   

2.
Védrine C  Fabiano S  Tran-Minh C 《Talanta》2003,59(3):535-544
An amperometric enzyme sensor using tyrosinase, also called polyphenol oxidase (PPO), was constructed for determination of phenolic compounds and herbicides. The enzyme was entrapped in a conducting polymer, poly 3,4-ethylenedioxythiophene (PEDT), electrochemically generated on a glassy carbon electrode. Several experimental parameters in the electropolymerisation process and working conditions were determined to optimise biosensor performances. Mono-phenol and di-phenol were tested in oxygenated solutions, by amperometric measurements at −200 mV (vs. SCE) in a batch system. The limit of detection of these molecules ranges from 5 to 500 nM. Detection of herbicides was obtained from the inhibition of tyrosinase electrode responses. The limit of detection for atrazine and diuron was 1 and 0.5 mg l−1 respectively. These data suggest that PEDT film is a promising PPO immobilisation method.  相似文献   

3.
Tyrosinase/laccase bienzyme biosensor for amperometric determination of phenolic compounds was constructed. Enzymes were immobilized in titania gel matrix. The obtained biosensor was successfully used for determination of 2,6-dimethoxyphenol, 4-tertbutylcatechol, 4-methylcatechol, 3-chlorophenol and catechol. The highest sensitivity and the widest linear range were noticed for catechol, 234 mA L mol− 1 and 2.0 × 10− 7–3.2 × 10− 5 mol/L, respectively. Detection limit for catechol, at signal-to-noise ratio of 3 was 1.3 × 10− 7 mol/L.  相似文献   

4.
An amperometric enzyme electrode based on direct covalent immobilization of tyrosinase on a boron-doped diamond (BDD) electrode has been developed for the detection of phenolic compounds. Combined chemical and electrochemical modifications of the BDD film with 4-nitrobenzenediazonium tetrafluoroborate, an aminophenyl-modified BDD (AP–BDD) surface was produced, and then the tyrosinase was covalently immobilized on the BDD surface via carbodiimide coupling. The response dependences of the enzyme electrode (Tyr–AP–BDD electrode) on pH of solution, applied potential, oxygen level and phenolic compounds diffusion were studied. The Tyr–AP–BDD electrode shows a linear response range of 1–200, 1–200 and 1–250 μM and sensitivity of 232.5, 636.7 and 385.8 mA M−1 cm−2 for phenol, p-cresol and 4-chlorophenol, respectively. 90 percent of the enzyme activity of the Tyr–AP–BDD electrode is retained for 5 weeks storing in 0.1 M PBS (pH 6.5) at 4 °C.  相似文献   

5.
Bulk-modified epoxy-graphite tyrosinase biosensors were fabricated by four different procedures. The influence of these fabrication procedures on the analytical performance of the enzyme electrode in an amperometric wall-jet flow cell has been studied. The bioprobe performance is assessed by cyclic voltammetry. Higher current densities and narrower peaks were obtained when the enzyme was introduced in the dry state into the epoxy-graphite material, instead of introducing it previously dissolved in the buffer. In the F1 system responses of 11.79 μA cm−2 and 1.43 μA cm−2 are then obtained for catechol and phenol respectively for 50 μL injections of 20 μM solutions. Moreover, if gold/palladium is introduced into the epoxy-graphite, a further increase in current is achieved resulting in 27.70μA cm−2 and 4.90μA cm−2for catechol and phenol, respectively. This biosensor can operate in aqueous as well as in mixed aqueous-organic environments.  相似文献   

6.
Engin Asav 《Talanta》2009,78(2):553-987
In this study, a new biosensor based on the inhibition of tyrosinase for the determination of fluoride is described. To construct the biosensor tyrosinase was immobilized by using gelatine and cross-linking agent glutaraldehyde on a Clark type dissolved oxygen (DO) probe covered with a teflon membrane which is sensitive for oxygen. The phosphate buffer (50 mM, pH 7.0) at 30 °C were established as providing the optimum working conditions. The method is based on the measurement of the decreasing of dissolved oxygen level of the interval surface that related to fluoride concentration added into reaction medium in the presence of catechol. Inhibitor effect of fluoride results in decrease in dissolved oxygen concentration. The biosensor response depends linearly on fluoride concentration between 1.0 and 20 μM with a response time of 3 min.In the characterization studies of the biosensor some parameters such as reproducibility, substrate specificity and storage stability were carried out. From the experiments, the average value (x), Standard deviation (S.D) and coefficient of variation (C.V %) were found as 10.5 μM, ± 0.57 μM, 5.43%, respectively for 10 μM fluoride standard.  相似文献   

7.
An amperometric biosensor based on tyrosinase immobilized in silicate/Nafion composite film has been developed for the determination of phenolic compounds. The Nafion polymer in the composite was used not only to overcome the brittleness of the pure sol-gel-derived silicate film but also to increase the long-term stability of the biosensor. Tyrosinase was immobilized by a thin film of silicate/Nafion composite on a glassy carbon electrode. Phenolic compounds were determined by the direct reduction of biocatalytically-liberated quinone species at −200 mV versus Ag/AgCl (3 M NaCl). The process parameters for the fabrication of the enzyme electrode and various experimental variables such as pH and operating potential were explored for optimum analytical performance of the enzyme electrode. The biosensor can reach 95% of steady-state current in about 15 s. The sensitivities of the biosensor for catechol and phenol were 200 and 46 mA/M, respectively. A detection limit of 0.35 mM catechol was obtained with a signal-to-noise ratio of 3. The enzyme electrode retained 74% of its initial activity after 2 weeks of storage in 50 mM phosphate buffer at pH 7.  相似文献   

8.
A novel electrochemical sensor based on the immobilization of tyrosinase(tyr) onto gold nanoparticles(nano-Au) and thioctic acid amide(T-NH2) self-assembled monolayers(SAMs)-modified gold electrode has been developed for the determination of bisphenol A(BPA).It was found that the nano-Au could significantly enhance the electrochemical response of tyr/nano-Au/T-NH2/Au electrode to BPA,and the enhancement effect of nano-Au on the current response was also related to the enzyme.The results indicated that the biosensor could be used as a detector for BPA determination with a linear range from3.99 ×10-7mol/L to 2.34 ×10-4mol/L and a detection limit of 1.33×10-7mol/L.In addition,this biosensor showed good reproducibility.  相似文献   

9.
The construction of amperometric enzymeless biosensors for phenolic compounds determination, using carbon paste electrode modified with copper phtalocyanine (CuPc) and histidine (His), based on the chemistry of the dopamine β-monooxygenase (DβM) enzyme that catalyzes the hydroxylation of the dopamine and its analogs is shown. The modified carbon paste was evaluated on electrodes constructed in two ways: putting the paste into a cavity of a rotating disk electrode and a platinum slide electrode fixed into a glass tube. The sensor in hydrodynamic conditions presented a linear response range between 30 and 250 μmol l−1, with a sensitivity of 4.6±0.1 nA l μmol−1 cm−2 for catechol, response time of 3 s and lifetime of about 50 days when stored at room temperature. The sensor in static conditions showed a linear response range from 40 to 250 μmol l−1, with a sensitivity of 0.30±0.01 nA l μmol−1 cm−2 for catechol. The sensors presented the following relative response order for dopamine and some analog species: catechol>dopamine>guaiacol>serotonin>phenol.  相似文献   

10.
In this work, the adsorption of tyrosinase on ZnO nanorods and its electrocatalytic behaviors were investigated. The mushroom tyrosinase with low isoelectric point was expected to adhere on the positively charged surface of ZnO nanorods by electrostatic attraction in a neutral solution. Scanning electron microscope images and spectroscopic analysis demonstrated the adsorption of tyrosinase on ZnO nanorods and the adsorbed tyrosinase remain its bioactivity to a large extent. In the presence of tyrosinase, a roughly and cyathiform of nanosized ZnO films was obtained. This open, three-dimensioned ramiform structure made the move through and exchange the electron with GCE more easily, and thus accelerating the electron transfer between electroactive and GCE. The adsorbed tyrosinase could catalyze the oxidation of phenol and catechol. The linear concentration ranges were from 0.02 to 0.1 mM and 0.01 to 0.4 mM, for phenol and catechol, respectively. The apparent Michaelis-menten constant , a reflection of the enzymatic affinity, was 0.24 mM for phenol and 1.75 mM for catechol, which suggests a large affinity to phenolic compound. The proposed methods presented a way for further studies of the immobilization and electrochemistry of proteins on nanostructured materials.  相似文献   

11.
A phenol biosensor was developed based on the immobilization of tyrosinase on the surface of modified magnetic MgFe2O4 nanoparticles. The tyrosinase was first covalently immobilized to core-shell (MgFe2O4-SiO2) magnetic nanoparticles, which were modified with amino group on its surface. The resulting magnetic bio-nanoparticles were attached to the surface of carbon paste electrode (CPE) with the help of a permanent magnet. The immobilization matrix provided a good microenvironment for the retaining of the bioactivity of tyrosinase. Phenol was determined by the direct reduction of biocatalytically generated quinone species at −150 mV versus SCE. The resulting phenol biosensor could reach 95% of steady-state current within 20 s and exhibited a high sensitivity of 54.2 μA/mM, which resulted from the high tyrosinase loading of the immobilization matrix. The linear range for phenol determination was from 1 × 10−6 to 2.5 × 10−4 M with a detection limit of 6.0 × 10−7 M obtained at a signal-to-noise ratio of 3. The stability and the application of the biosensor were also evaluated.  相似文献   

12.
Tyrosinase [EC 1.14.18.1], immobilized on a rotating disk, catalyzed the oxidation of catechols to o-benzoquinone, whose back electrochemical reduction was detected on glassy carbon electrode surface at −150 mV versus Ag/AgCl/NaCl 3 M. Thus, when penicillamine (PA) was added to the solution, this thiol-containing compound participate in Michael type addition reactions with o-benzoquinone to form the corresponding thioquinone derivatives, decreasing the reduction current obtained proportionally to the increase of its concentration. This method could be used for sensitive determination of PA in drug and human synthetic serum samples. A linear range of 0.02–80 μM (r = 0.999) was obtained for amperometric determination of PA in buffered pH 7.0 solutions (0.1 M phosphate buffer). The biosensor has a reasonable reproducibility (R.S.D. < 4.0%) and a very stable amperometric response toward this compound (more than 1 month).  相似文献   

13.
14.
<正>A mixed self-assembled monolayers(SAMs) of thioctic acid(T-COOH) and thioctic acid amide(T-NH_2) were used to immobilize tyrosinase for fabricating biosensor.The results showed that the mixed SAMs prepared from solution at the ratio of 1:4 provided an excellent microenvironment for enzymatic reaction between tyrosinase and substrate.The biosensor exhibited a fast response and high sensitivity for sensing substrate.  相似文献   

15.
A novel tyrosinase (Tyr) biosensor based on liposome bioreactor and chitosan (CS) nano-composite has been developed for the detection of phenolic compounds. Liposome-based bioreactors were prepared by encapsulating the enzyme Tyr in l-α-phosphatidylcholine liposome resulting in spherical bioreactor with a mean diameter of 8.5?±?1.25 μm. The encapsulation efficiency and drug loading content of the Tyr-loaded liposome-based bioreactors were about 46.35?±?0.85 and 41.15?±?0.95 %, respectively. Porins were embedded into the lipid membrane, allowing for the free substrate transport, but not that of the enzyme due to size limitations. The glassy carbon electrode (GCE) was alternately immersed in CS and Tyr liposome bioreactor (TLB) to assemble bilayer films [(CS/TLB)/GCE]. The presence of Tyr in the biosensor was confirmed by scanning electron microscopy, cyclic voltammetry, and electrochemical measurements. The results indicated that the biosensor was applied to detect phenol with a broad linear range from 0.25 nM to 25 μM, the detection limit was brought down to 0.091 nM. The apparent Michaelis–Menten constant, K m, for the enzymatic reaction was 34.78 μM. The novel biosensor exhibits good repeatability and stability. Such new biosensor based on encapsulation of Tyr within liposome bioreactors shows great promise for rapid, simple, and cost-effective analysis of phenolic contaminants in environmental samples. The proposed strategy can be extended for the development of other enzyme-based biosensors.  相似文献   

16.
The preparation of a tyrosinase biosensor based on the immobilization of the enzyme onto a glassy carbon electrode modified with electrodeposited gold nanoparticles (Tyr-nAu-GCE) is reported. The enzyme immobilized by cross-linking with glutaraldehyde retains a high bioactivity on this electrode material. Under the optimized working variables (a Au electrodeposition potential of −200 mV for 60 s, an enzyme loading of 457 U, a detection potential of −0.10 V and a 0.1 mol l−1 phosphate buffer solution of pH 7.4 as working medium) the biosensor exhibited a rapid response to the changes in the substrate concentration for all the phenolic compounds tested: phenol, catechol, caffeic acid, chlorogenic acid, gallic acid and protocatechualdehyde. A R.S.D. of 3.6% (n = 6) was obtained from the slope values of successive calibration plots for catechol with the same Tyr-nAu-GCE with no need to apply a cleaning procedure to the biosensor. The useful lifetime of one single biosensor was of at least 18 days, and a R.S.D. of 4.8% was obtained for the slope values of catechol calibration plots obtained with five different biosensors. The kinetic constants and the analytical characteristics were calculated for all the phenolic compounds tested. The Tyr-nAu-GCE was applied for the estimation of the phenolic compounds content in red and white wines. A good correlation of the results (r = 0.990) was found when they were plotted versus those obtained by using the spectrophotometric method involving the Folin-Ciocalteau reagent.  相似文献   

17.
Ruan C  Li Y 《Talanta》2001,54(6):791-1103
A bienzyme biosensor based on tyrosinase and horse-radish peroxidase is described in a flow injection analysis and cyclic voltammetry for measurement of phenol. Tyrosinase and horse-radish peroxidase were immobilized on the surface of a glassy carbon electrode by bovine serum albumin and glutaric dialdehyde. Phenol was oxidized by tyrosinase and horse-radish peroxidase via catechol to o-quinone in the presence of oxygen and hydrogen peroxide. The o-quinone was reduced to produce catechol (the substrate recycling) on the electrode surface. The enhanced sensitivity of the bienzyme electrode to phenol was observed in the flow injection system comparing with tyrosinase and horse-radish peroxidase monoenzyme electrodes. The mechanisms for enhanced amperometric response to phenol of bienzyme electrode were discussed. The biosensor was used to detect alkaline phosphatase (ALP). A detection limit of 1.4×10−15 M ALP (140 zmol/100 μl) was obtained after 1 h incubation with phenyl phosphate.  相似文献   

18.
A tyrosinase (Tyr) biosensor has been constructed by immobilizing tyrosinase on the surface of Mg–Al–CO3 hydrotalcite-like compound film (HTLc) modified glassy carbon electrode (GCE) for the determination of polyphenols. The negatively charged tyrosinase was adsorbed firmly on the surface of a positively charged HTLc/GCE by electrostatic interactions and retained its activity to a great degree. The modified electrode was characterized by cyclic voltammetry and AC impedance spectra. Polyphenols were determined by a direct reduction of biocatalytically generated quinone species. The different parameters, including pH, temperature, and enzyme loading were investigated and optimized. Under the optimum conditions, Tyr/HTLc electrode gave a linear response range of 3–300, 0.888–444, and 0.066–396 μM with a detection limit (S/N = 3) of 0.1, 0.05, and 0.003 μM for catechol, caffeic acid, and quercetin, respectively. In addition, the repeatability and stability of the enzyme electrode were estimated. Total polyphenol contents of real samples were also determined to study the potential applicability of the Tyr/HTLc/GCE biosensor.  相似文献   

19.
Huang HY  Lien WC 《Electrophoresis》2005,26(16):3134-3140
In this study, a microemulsion electrokinetic chromatography (MEEKC) method was developed to analyze and detect 13 phenolic compounds (syringic acid, p-cumaric acid, vanillic acid, caffeic acid, gallic acid, 3,4-dihydroxybenzoic acid, 4-hydroxybenzoic acid, (+)-catechin, (-)-epigallocatechin, (-)-epicatechin gallate, (-)-epigallocatechin gallate, (-)-epicatechin, and (-)-gallocatechin), which are present in many plant-derived foods. The effects of cosurfactant, organic modifier, and oil were examined in order to optimize the separation of these phenolic compounds. The amounts of cosurfactant (cyclohexanol) and organic modifier (acetonitrile) were determined as the major influence on the separation selectivity, while the type of oil partially affected the separation resolution of the phenolic compounds. A highly efficient MEEKC separation method was achieved within 14 min by using a microemulsion solution of pH 2.0 containing 2.89% w/v SDS, 1.36% w/v heptane, 7.66% w/v cyclohexanol, and 2% w/v ACN. Furthermore, the present work could demonstrate that the nature of the oil phase has a significant influence on the separation selectivity of phenolic compounds.  相似文献   

20.
《Electroanalysis》2006,18(16):1572-1577
An amperometric tyrosinase biosensor was developed via a simple and effective immobilization method using the self‐assembled monolayers (SAMs) technique. The organic monolayer film was first formed by the spontaneous assembly of thiolor sulfur compound (1,6‐hexanedithiol, HDT) from solution onto gold electrode. When these thiol‐rich surfaces were exposed to Au colloid, the sulfurs form strong bonds to gold nanoparticles, anchoring the clusters to the electrode substrate. After the assembly of gold nanoparticles layer, a new nano‐Au surface was obtained. Thus, the tyrosinase could be immobilized onto the electrode. The tyrosinase retained its activity well in such an immobilization matrix. The various experimental variables for the enzyme electrode were optimized. The resulting biosensor can reach 95% of steady‐state current within 10 s, and the trend in the sensitivity of different phenolic compounds was as follows: catechol>phenol>p‐cresol. In addition, the apparent Michaelis–Menten constant (K and the stability of the enzyme electrode were estimated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号