首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New rhodium and iridium complexes, with the formula [MCl(PBz3)(cod)] [M = Rh (1), Ir (2)] and [M(PBz3)2(cod)]PF6 [M = Rh (3), Ir (4)] (cod = 1,5-cyclooctadiene), stabilized by the tribenzylphosphine ligand (PBz3) were synthesized and characterized by elemental analysis and spectroscopic methods. The molecular structures of 1 and 2 were determined by single-crystal X-ray diffraction. The addition of pyridine to a methanol solution of 1or 2, followed by metathetical reaction with NH4PF6, gave the corresponding derivatives [M(py)(PBz3)(cod)]PF6 [M = Rh (5), Ir (6)]. At room temperature in CHCl3 solution, 4 converted spontaneously to the ortho-metallated complex [IrH(PBz3)(cod){η2-P,C-(C6H4CH2)PBz2}]PF6 (7) as a mixture of cis/trans isomers via intramolecular C-H activation of a benzylic phenyl ring. The reaction of 3 or 4 with hydrogen in coordinating solvents gave the dihydrido bis(solvento) derivative [M(H)2(S)2(PBz3)2]PF6 (M = Rh, Ir; S = acetone, acetonitrile, THF), that transformed into the corresponding dicarbonyls [M(H)2(CO)2(PBz3)2]PF6 by treatment with CO. Analogous cis-dihydrido complexes [M(H)2(THF)2(py)(PBz3)2]PF6 (M = Rh, Ir) were observed by reaction of the py derivatives 5 and 6 with H2.  相似文献   

2.
The reactivity of (3,5-dimethyl-1H-pyrazol-1-yl)ethyldiphenylphosphine (L) hybrid ligand against Cu(I), Ag(I) and Au(I) has been assayed and compounds [Cu(L)2](PF6) (1), [Ag(L)]2(PF6)2·2C2H4Cl2·2C4H10O (2) and [AuCl(L)]2 (3) have been isolated and fully characterised. A fully characterisation by analytical and spectroscopic methods of 1-3 are presented and X-ray crystal structures of 1 and 2 are also reported. The similar data obtained between 2 and 3 permits to do a serious purpose of the structure of 3 in solid and solution.  相似文献   

3.
Reaction of N(4)-phenyl-2-formylpyridine thiosemicarbazone (H2Fo4Ph), N(4)-phenyl-2-acetylpyridine thiosemicarbazone (H2Ac4Ph) and N(4)-phenyl-2-benzoylpyridine thiosemicarbazone (H2Bz4Ph) with gallium nitrate gave [Ga(H2Fo4Ph)2](NO3)3 (1), [Ga(2Ac4Ph)2]NO3 (2) and [Ga(2Bz4Ph)2]NO3 (3). In all complexes coordination of the thiosemicarbazone via the Npy–N–S chelating system occurs. In 1 the thiosemicarbazone acts as a neutral ligand while in 2 and 3 the ligand is anionic. Upon slow diffusion of 2 in DMSO [Ga(2Ac4Ph)2]NO3·DMSO (2a) was formed. The crystal structure of 2a was determined. Upon coordination the antibacterial activity of both gallium and thiosemicarbazones against Pseudomonas aeruginosa significantly increases.  相似文献   

4.
New [Ni(SCN)2(L)4/2] complexes, where L = py (1), γ-pic (2), pyCH2OH (3), py(CH2)3OH (4) were synthesized in simple reactions of NiCl2·6H2O with ammonia thiocyanate and pyridine type ligands in methanol solutions. Blue crystals of [Ni(SCN)2(py)4] (1), [Ni(SCN)2(pyCH2OH)2] (3) and [Ni(SCN)2(py(CH2)3OH)2] (4) crystallize in the monoclinic system, blue crystal of [Ni(SCN)2(γ-pic)4] (2) – in the tetragonal one, and red crystal of [Ni(SCN)2(PPh3)2] (5) – in the triclinic one. The ligands of complexes (1) and (3) were indicated as rather strong π-acceptors while that of complex (4) one has some π-donor properties. When the aliphatic chain (CH2) elongates in the sequence: (1), (3) and (4), an increase in the orbital contribution to the magnetic moment and a decrease in the 10Dq value of the d orbital splitting are related to the change of the point group symmetry from D2h, via D2v to C2h.  相似文献   

5.
Reaction of a triangle Pd(0) complex, Pd3(CNXyl)6 (1; Xyl = 2,6-C6H3Me2), with a dicationic linear trinuclear complex [Pd3(CNXyl)8][PF6]2 (3) afforded a dicationic hexapalladium complex [Pd6(CNXyl)12][PF6]2 (4), while the reaction of 1 with a dicationic dinuclear complex [Pd2(CNXyl)6][PF6]2 (2) resulted in the formation of 3. The molecular structure of the complex 4 was determined by X-ray crystallography and spectroscopic analysis.  相似文献   

6.
Interaction of copper(II) salts with 2,2′-dipyridylamine (1), N-cyclohexylmethyl-2,2′-dipyridylamine (2), di-2-pyridylaminomethylbenzene (3), 1,2-bis(di-2-pyridylaminomethyl)-benzene (4), 1,3-bis(di-2-pyridylaminomethyl)benzene (5), 1,4-bis(di-2-pyridylaminomethyl)benzene (6), 1,3,5-tris(di-2-pyridylaminomethyl)benzene (7) and 1,2,4,5-tetrakis(di-2-pyridylaminomethyl)benzene (8) has yielded the following complexes: [Cu(2)(μ-Cl)Cl]2, [Cu(3)(μ-Cl)Cl]2 · H2O, [Cu2(4)(NO3)4], [Cu2(5)(NO3)4] · 2CH3OH, [Cu2(6)(CH3OH)2(NO3)4], [Cu4(8)](NO3)4] · 4H2O while complexation of palladium(II) with 1, 4, 5 and 6 gave [Pd(1)2](PF6)2 · 2CH3OH, [Pd2(4)Cl4], [Pd2(4)(OAc)4], [Pd2(5)Cl4], [Pd2(6)Cl4] and [Pd2(6)(OAc)4] · CH2Cl2, respectively. X-ray structures of [Cu(2)(μ-Cl)Cl]2, [Cu(3)(μ-Cl)Cl]2 · 2C2H5OH, [Cu2(6)(CH3OH)2(NO3)4], [Pd(1)2](PF6)2 · 2CH3OH, [Pd2(4)(OAc)4] · 4H2O and [Pd2(6)(OAc)4] · 2CH2Cl2 are reported. In part, the inherent flexibility of the respective ligands has resulted in the adoption of a diverse range of coordination geometries and lattice arrangements, with the structures of [Pd2(4)(OAc)4· 4H2O and [Pd2(6)(OAc)4] · 2CH2Cl2, incorporating the isomeric ligands 4 and 6, showing some common features. Liquid–liquid (H2O/CHCl3) extraction experiments involving copper(II) and 13, 5, 7and 8 show that the degree of extraction depends markedly on the number of dpa-subunits (and concomitant lipophilicity) of the ligand employed with the tetrakis-dpa derivative 8 acting as the most efficient extractant of the six ligand systems investigated.  相似文献   

7.
The known complexes [Cp2Fe2(μ-SEt)2(MeCN)2](PF6)2 (1) and Cp2Fe2(μ-SEt)2(CN)2 (2) are prepared to investigate their reactivity. The reaction of complex 2 with equimolar amounts of MeOTf yields a monomethylation product [Cp2Fe2(μ-SEt)2(CN)(CNMe)](OTf) (3). Dimethylation of complex 2 by 2 equiv. MeOTf gives a complex [Cp2Fe2(μ-SEt)2(CNMe)2](OTf)2 (4). Complex 1 containing two labile MeCN ligands reacts with several bidentate phosphine ligands, such as dppm, dppa, and dppf, to afford complexes [Cp2Fe2(μ-SEt)2(dppm)](PF6)2 (5), [Cp2Fe2(μ-SEt)2(dppa)](PF6)2 (6), and [Cp2Fe2(μ-SEt)2(dppf)](PF6)2 (7), respectively. The spectroscopic, electrochemical, and reactivity studies of iron-sulfur core complexes are performed. The structures of complexes 1-7 were confirmed by X-ray crystallography.  相似文献   

8.
Four manganese(II) complexes of di-2-pyridyl ketone N(4)-methyl (HDpyMeTsc) and N(4)-ethyl thiosemicarbazones (HDpyETsc) were synthesized and physico-chemically characterized by means of partial elemental analyses, molar conductance measurements, electronic, infrared and EPR spectral studies. The complexes are represented as [Mn(DpyMeTsc)2] (1), [Mn(HDpyMeTsc)Cl2] (2), [Mn(HDpyMeTsc)2](ClO4)2 · H2O (3) and [Mn(DpyETsc)2] · 2H2O (4). The crystal structure of [Mn(DpyMeTsc)2] was established by single crystal X-ray diffraction studies. The compound crystallizes into a monoclinic lattice with P21/n space group. Manganese(II) exists in a distorted octahedral geometry in the complex.  相似文献   

9.
A series of half-sandwich ruthenium(II) complexes containing κ3(N,N,N)-hydridotris(pyrazolyl)borate (κ3(N,N,N)-Tp) and the water-soluble phosphane 1,3,5-triaza-7-phosphaadamantane (PTA) [RuX{κ3(N,N,N)-Tp}(PPh3)2−n(PTA)n] (n = 2, X = Cl (1), n = 1, X = Cl (2), I (3), NCS (4), H (5)) and [Ru{κ3(N,N,N)-Tp}(PPh3)(PTA)L][PF6] (L = NCMe (6), PTA (7)) have been synthesized. Complexes containing 1-methyl-3,5-diaza-1-azonia-7-phosphaadamantane(m-PTA) triflate [RuCl{κ3(N,N,N)-Tp}(m-PTA)2][CF3SO3]2 (8) and [RuX{κ3(N,N,N)-Tp}(PPh3)(m-PTA)][CF3SO3] (X = Cl (9), H (10)) have been obtained by treatment, respectively, of complexes 1, 2 and 5 with methyl triflate. Single crystal X-ray diffraction analysis for complexes 1, 2 and 4 have been carried out. DNA binding properties by using a mobility shift assay and antimicrobial activity of selected complexes have been evaluated.  相似文献   

10.
The reactions of PhSe, PhS and Se2− with N-{2-(chloroethyl)}pyrrolidine result in N-{2-(phenylseleno)ethyl}pyrrolidine (L1), N-{2-(phenylthio)ethyl}pyrrolidine (L2), and bis{2-pyrrolidene-N-yl)ethyl selenide (L3), respectively, which have been explored as ligands. The complexes [PdCl2(L1/L2)] (1/7), [PtCl2(L1/L2)] (2/8), [RuCl(η6-C6H6)(L1/L2)][PF6] (3/9), [RuCl(η6-p-cymene)(L1/L2)][PF6] (4/10), [RuCl(η6-p-cymene)(NH3)2][PF6] (5) and [Ru(η6-p-cymene)(L1)(CH3CN)][PF6]2·CH3CN (6) have been synthesized. The L1-L3 and complexes were found to give characteristic NMR (Proton, Carbon-13 and Se-77). The crystal structures of complexes 1, 3-6, 9 and 10 have been solved. The Pd-Se and Ru-Se bond lengths have been found to be 2.353(2) and 2.480(11)/2.4918(9)/2.4770(5) Å, respectively. The complexes 1 and 7 have been explored for catalytic Heck and Suzuki-Miyaura coupling reactions. The value of TON has been found up to 85 000 with the advantage of catalyst’s stability under ambient conditions. The efficiency of 1 is marginally better than 7. The Ru-complexes 3 and 9 are good for catalytic oxidation of primary and secondary alcohols in CH2Cl2 in the presence of N-methylmorpholine-N-oxide (NMO). The TON value varies between 8.0 × 104 and 9.7 × 104 for this oxidation. The 3 is somewhat more efficient catalyst than 9.  相似文献   

11.
Reactions of 0.5 eq. of the dinuclear complexes [(η6-arene)Ru(μ-Cl)Cl]2 (arene = η6-C6H6, η6-p-iPrC6H4Me) and [(Cp∗)M(μ-Cl)Cl]2 (M = Rh, Ir; Cp∗ = η5-C5Me5) with 4,6-disubstituted pyrazolyl-pyrimidine ligands (L) viz. 4,6-bis(pyrazolyl)pyrimidine (L1), 4,6-bis(3-methyl-pyrazolyl)pyrimidine (L2), 4,6-bis(3,5-dimethyl-pyrazolyl)pyrimidine (L3) lead to the formation of the cationic mononuclear complexes [(η6-C6H6)Ru(L)Cl]+ (L = L1, 1; L2, 2; L3, 3), [(η6-p-iPrC6H4Me)Ru(L)Cl]+ (L = L1, 4; L2, 5; L3, 6), [(Cp∗)Rh(L)Cl]+ (L = L1, 7; L2, 8; L3, 9) and [(Cp∗)Ir(L)Cl]+ (L = L1, 10; L2, 11; L3, 12), while reactions with 1.0 eq. of the dinuclear complexes [(η6-arene)Ru(μ-Cl)Cl]2 and [(Cp∗)M(μ-Cl)Cl]2 give rise to the dicationic dinuclear complexes [{(η6-C6H6)RuCl}2(L)]2+ (L = L1, 13; L2, 14; L3, 15), [{(η6-p-iPrC6H4Me)RuCl}2(L)]2+ (L = L1, 16; L2, 17; L3, 18), [{(Cp∗)RhCl}2(L)]2+ (L = L1, 19; L2, 20; L3, 21) and [{(Cp∗)IrCl}2(L)]2+ (L = L1 22; L2, 23; L3 24). The molecular structures of [3]PF6, [6]PF6, [7]PF6 and [18](PF6)2 have been established by single crystal X-ray structure analysis.  相似文献   

12.
The reaction of nickel and zinc chlorides and nitrates with the ligand N-(5,6-dihydro-4H-1,3-thiazin-2-yl)-2-aminobenzimidazole (BzTz) leads to the formation of the new complexes: [NiCl2(BzTz)2] (1), [Ni(NO3)(BzTz)2(H2O)3](NO3) (2), [ZnCl2(BzTz)2] (3) and [Zn(NO3)2(BzTz)2] (4). They have been characterized by spectroscopic methods (electronic, infrared and NMR) and magnetic susceptibility measurements. Additionally, the crystal structures of the complexes 1 and 3 have been determined by X-ray single-crystal diffraction. The ligand exhibits the N-benzimidazole coordination mode on interacting with the metal centers. The X-ray structure of the complexes 1 and 3 reveals a distorted tetrahedral coordination geometry around the metal center, with the metallic atoms coordinated to two chlorine atoms and two benzimidazole nitrogen atoms. These two complexes are isostructural, crystallizing in the monoclinic system and Cc space group. In complex 2 the geometry around the nickel atom could be described as a distorted octahedron whereas in case of complex 4 the zinc atom is in a distorted tetrahedral environment.  相似文献   

13.
The bimetallic [Ni2(H2L2)2](ClO4)4 (1), [Ni2(HL2)(H2L2)](ClO4)3 (2) and [Zn2(H2L2)2](BF4)4 (3) complexes (H2L2 = N,N2-bis[(1E)-1-(2-pyridyl)ethylidene]propanedihydrazide) were synthesized and characterized. The structure of complexes (1) and (2) was established by X-ray analysis. NMR spectroscopy was used for the characterization of complex (3). The complexes (1) and (2) were obtained from the same synthetic reaction and two crystal types of these complexes have been isolated during the fractional crystallization process.  相似文献   

14.
The interaction of di(2-picolyl)amine (1) and its secondary N-substituted derivatives, N-(4-pyridylmethyl)-di(2-picolyl)amine (2), N-(4-carboxymethyl-benzyl)-di(2-picolyl)amine (3), N-(4-carboxybenzyl)-di(2-picolyl)amine (4), N-(1-naphthylmethyl)-di(2-picolyl)amine (5), N-(9-anthracenylmethyl)-di(2-picolyl)amine (6), 1,4-bis[di(2-picolyl)aminomethyl]benzene (7), 1,3-bis[di(2-picolyl)aminomethyl]benzene (8) and 2,4,6-tris[di(2-picolyl)amino]triazine (9) with Ni(II) and/or Zn(II) nitrate has resulted in the isolation of [Ni(1)(NO3)2], [Ni(2)(NO3)2], [Ni(3)(NO3)2], [Ni(4)(NO3)2]·CH3CN, [Ni(5)(NO3)2], [Ni(6)(NO3)2], [Ni2(7)(NO3)4], [Ni2(8)(NO3)4], [Ni3(9)(NO3)6]·3H2O, [Zn(3)(NO3)2]·0.5CH3OH, [Zn(5)(NO3)2], [Zn(6)(NO3)2], [Zn(8)(NO3)2] and [Zn2(9)(NO3)4]·0.5H2O. X-ray structures of [Ni(4)(NO3)2]·CH3CN, [Ni(6)(NO3)2] and [Zn(5)(NO3)2] have been obtained. Both nickel complexes exhibit related distorted octahedral coordination geometries in which 4 and 6 are tridentate and bound meridionally via their respective N3-donor sets, with the remaining coordination positions in each complex occupied by a monodentate and a bidentate nitrato ligand. For [Ni(4)(NO3)2]·CH3CN, intramolecular hydrogen bond interactions are present between the carboxylic OH group on one complex and the oxygen of a monodentate nitrate on an adjacent complex such that the complexes are linked in chains which are in turn crosslinked by intermolecular offset π-π stacking between pyridyl rings in adjacent chains. In the case of [Ni(6)(NO3)2], two weak CH?O hydrogen bonds are present between the axial methylene hydrogen atoms on one complex and the oxygen of a monodentate nitrate ligand on a second unit such that four hydrogen bonds link pairs of complexes; in addition, an extensive series of π-π stacking interactions link individual complex units throughout the crystal lattice. The X-ray structure of [Zn(5)(NO3)2] shows that the metal centre once again has a distorted six-coordinated geometry, with the N3-donor set of N-(1-naphthylmethyl)-di(2-picolyl)amine (5) coordinating in a meridional fashion and the remaining coordination positions occupied by a monodentate and a bidentate nitrato ligand. The crystal lattice is stabilized by weak intermolecular interactions between oxygens on the bound nitrato ligands and aromatic CH hydrogens on adjacent complexes; intermolecular π-π stacking between aromatic rings is also present.  相似文献   

15.
The structural and spectroscopic characterization of coordination compounds of four aromatic amines derived from benzimidazole, 2-aminobenzimidazole (L1), 1-(S-methylcarbodithioate)-2-aminobenzimidazole (L2), 2-(2-aminophenyl)-1H-benzimidazole (L3) and 6,6-dimethyl-5H-benzimidazolyl[1,2-c]quinazoline (L4) are reported. Cobalt(II) [Co(L1)2(CH3COO)2] (1) and nickel(II) [Ni(L1)2(CH3COO)2] (2) acetate coordination compounds of L1 are discussed. The synthesis and the X-ray crystal structure of the new 1-(S-methylcarbodithioate)-2-aminobenzimidazole (L2) is informed, together with its cobalt(II) [Co(L2)2Cl2] (3), [Co(L2)2Br2] (4) and zinc(II) [Co(L2)2Cl2] (5), [Zn(L2)2Br2] (6) coordination compounds. In these compounds the imidazolic nitrogen is coordinated to the metal center, while the ArNH2 and the S-methylcarbodithioate groups do not participate as coordination sites. A co-crystal of L1 and L2 is analyzed. Structural analyses of the coordination compounds of L3 showed that this ligand behaves as a bidentate ligand through the aniline and the imidazole groups forming six membered rings in the cobalt(II) [Co(L3)Cl2] (7) and zinc(II) [Zn(L3)Cl2] (8) compounds, as well as the nickel(II) nitrate [Ni(L3)2(H2O)2](NO3)2 (9). The quinazoline L4 was produced by insertion of one acetone molecule and water elimination in L3, its X-ray crystal diffraction analysis, as well as that of its zinc(II) coordination compound [Zn(L4)2Cl2] (10), are discussed.  相似文献   

16.
The extended structures of Ag-complexes of the azine based ligands phenyl-2-pyridyl ketone azine (L1) and di-2-pyridyl ketone azine (L2) are reported, and focus is made on the investigation of the influence of the anion and supramolecular interactions on the self-assembly. Using AgNO3, AgClO4 and CF3COOAg salts as starting materials for both ligands in acetonitrile, we observed the formation of the dinuclear complexes [Ag2(L1)2](NO3)2 (1a), [Ag2(L1)2](ClO4)2 (1b), from L1, the tetranuclear complexes [Ag4(L2)2 (NO3)(CH3CN)2](NO3)3 (2a), [Ag4(L2)2(CF3COO)3CH3CN](CF3COO) (2b) and the linear chain polynuclear complex {[Ag3(L2)2] (ClO4)3}n (3) from L2. The X-ray structures show that the molecular geometry depends on the choice of anion. The silver centers have distorted tetrahedral coordination geometry in all the complexes. Weak hydrogen bonding and other interactions result in 2-D and 3-D networks in these complexes.  相似文献   

17.
The treatment of the complex [Ir(η2-C2H4)2(L)][PF6] (L = κ3-N,N,N-(S,S)-iPr-pybox) with acetic acid (1:1 molar ratio) at −10 °C affords the complex [Ir(C2H5)(κ2-O,O-O2CCH3)(L)][PF6] (1). The dinuclear iridium(III) complex [Ir2(μ-Cl)2(C2H5)2(L)2][PF6]2 (2) is stereoselectively obtained by spontaneous intramolecular insertion of ethylene into the iridium-hydride bond of the mononuclear complex [IrClH(η2-C2H4)(L)][PF6]. The single bridging chloride dinuclear derivative [Ir2(μ-Cl)(C2H5)2Cl2(L)2][PF6] (3) is prepared by reaction of 2 with one equivalent of NaCl. The intramolecular insertion reaction of methyl and ethyl propiolate into the Ir-H bond of the complex [IrClH(MeCN)(L)][PF6] gives stereoselectively the dinuclear complexes [Ir2(μ-Cl)2(HCCHCO2R)2(L)2][PF6]2 (R = Me (4), Et (5)). The reaction of the complexes 4, 5 with one equivalent of NaCl or with an excess of sodium acetate yields the dinuclear [Ir2(μ-Cl)(HCCHCO2R)2Cl2(L)2][PF6] (R = Me (6), Et (7)) or the mononuclear [IrCl(HCCHCO2Et)(κ1-O-O2CMe)(L)] (8) complexes, respectively. The structure of the dinuclear complex 3 · CH2Cl2 has been determined by an X-ray monocrystal study.  相似文献   

18.
The reactions of the ligands 2,6-(Me2NCH2)2C5H3N (N’NN’) (1) and 2,6-(PhSeCH2)2C5H3N (SeNSe) (4) with different coinage metal starting materials gave 1:1, 2:1 or 1:2 metal-to-ligand species, i.e. [Ag(N’NN’){O(O)CCF3}] (2), [{Ag(PPh3)}2(N’NN’)](OTf)2 (3), [Au(SeNSe)Cl]Cl2 (5), [Ag(PPh3)(SeNSe)](OTf) (6), [Cu(MeCN)(SeNSe)](PF6) (7) or [Cu(SeNSe)2](PF6) (8). The new compounds were investigated by IR, multinuclear NMR spectroscopies as well as mass spectrometry. In most cases, the ligands 1 and 4 act as pincer ligands. An attempt to grow single crystals of 2 gave an unexpected result. The crystal investigated by X-ray diffraction proved to be a polynuclear species, [Ag4(N’NN’){O(O)CCF3}4(EtOH)]n (2a), which contains an unusual, bimetallic triconnective coordination pattern of the N’NN’ ligand. Two tetranuclear [Ag4(N’NN’){O(O)CCF3}4(EtOH)] units form centrosymmetric dimers further associated into a polymer which contains four different coordination environments around silver atoms. The complex 3, in which the ligand also exhibits a bimetallic triconnective pattern, shows an intense, long-lived luminescence in the solid state with emission energies in the green region of the visible spectrum.  相似文献   

19.
The semirigid tridentate 8-(2-pyridinylmethylthio)quinoline ligand (Q1) is shown to form the structurally characterized transition metal complexes [Cu(Q1)Cl2] (1), [Co(Q1)(NO3)2] (2), [Cd(Q1)(NO3)2] (3), [Cd(Q1)I2] (4). [Cu(Q1)2](BF4)2·(H2O)2 (5), [Cu(Q1)2](ClO4)2·(CH3COCH3)2 (6), [Zn(Q1)2](ClO4)2(H2O)2 (7), [Cd2(Q1)2Br4] (8), [Ag2(Q1)2(ClO4)2] (9), and [Ag2(Q1)2(NO3)2] (10). Four types of structures have been observed: ML-type in complexes 14, in which the anions Cl, NO3 or I also participate in the coordination; ML2 type in complexes 57 without direct coordination of the anions BF4 or ClO4 and with more (Cu2+) or less (Zn2+) distorted bis-fac coordinated Q1; M2L2-type in complex 8, in which two Br ions act as bridges between two metal ions; and M2(μ-L)2-type in complexes 9 and 10, in which the ligand bridges two anion binding and Ag–Ag bonded ions. Depending on electron configuration and size, different coordination patterns are observed with the bonds from the metal ions to Npyridyl longer or shorter than those to Nquinoline. Typically Q1 acts as a facially coordinating tridentate chelate ligand except for the compounds 9 and 10 with low-coordinate silver(I). Except for 6 and 8, the complexes exhibit distinct constraining effects against both G(+) and G(-) bacteria. Complexes 1, 3, 4, 5, 7 have considerable antifungal activities and complexes 1, 5, 7, and 10 show selective effects to restrain certain botanic bacteria. Electrochemical studies show quasi-reversible reduction behavior for the copper(II) complexes 1, 5 and 6.  相似文献   

20.
1-Alkyl-2-(naphthyl-α/β-azo)imidazole (α-NaiR 1; β-NaiR, 2) react with [Os(H)(Cl)(CO)(PPh3)3] in THF and synthesise [Os(H)(CO)(PPh3)2(α/β-NaiR)](PF6) (3, 4). The X-ray structure of [Os(H)(CO)(PPh3)2(α-NaiEt)](PF6) (3c) shows a distorted octahedral geometry. Other spectroscopic studies (IR, UV–Vis, NMR) support the stereochemistry of the complexes. Addition of Cl2 in MeCN to 3 or 4 gives [Os(Cl)(CO)(α/β-NaiR)(PPh3)2](PF6) (5, 6), which were characterized by spectroscopic studies. The redox properties of the complexes show Os(III)/Os(II), Os(IV)/Os(III) and azo reductions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号