首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
A tetranitrile monomer N,N-bis{2-[2-(3,4-dicyanophenoxy)ethoxy]ethyl}-4-methylbenzenesulfonamide (3) was synthesized by nucleophilic aromatic substitution of N,N-bis[2-(2-hydroxyethoxy)ethyl]-4-methylbenzenesulfonamide (1) onto 4-nitrophthalonitrile (2). The metal-free phthalocyanine polymer (4) was prepared by the reaction of a tetranitrile monomer 3 in 2-(dimethylamino)ethanol. Ni(II), Co(II) and Cu(II) phthalocyanine polymers were prepared by the reaction of the tetranitrile compound with the chlorides of Ni(II), Co(II) and Cu(II) in 2-(dimethylamino)ethanol (DMAE). The Zn(II)-phthalocyanine polymer was prepared by the reaction of the tetranitrile compound with the acetate of Zn(II) in DMAE. The new compounds were characterized by a combination of IR, 1H NMR, 13C NMR, UV–Vis, elemental analysis and MS spectral data.  相似文献   

2.
Preparation of some novel symmetrically tetrasubstituted metal-free phthalocyanine (6) and metallophthalocyanines (7-10) containing four 18-membered tetrathiadiaza macrocycles moieties on peripheral positions has been achieved by cyclotetramerization reaction of phthalonitrile derivative (5) in a multi-step reaction sequence. Metal-free phthalocyanine (6) was synthesized by microwave irradiation of 13,24-bis[(4-methylphenyl)sulfonyl]-6,7,14,15,23,24-hexahydro-13H,22H-tribenzo[b,h,n][1,4,10,13,7,16]tetrathiadiazacyclo-octadecine-18,19-dicarbonitrile (5) in 2-(dimethylamino)ethanol. The metallophthalocyanines (7-10) were prepared by the reaction of the phthalonitrile compound (5) with NiCl2, Zn(CH3COO)2, CoCl2, CuCl2 salts, respectively, by microwave irradiation in 2-(dimethylamino)ethanol for at 175 °C, 350 W. The new compounds were characterized by IR, 1H NMR, 13C NMR, UV-Vis, elemental analysis and MS spectra data.  相似文献   

3.
Two title compounds, N,N,N′,N′-tetraphenyl-1,3-bis(5-aminothien-2-yl)azulene (3a) and 1,3-bis{5-(9-carbazolyl)thien-2-yl}azulene (3b), were synthesized from 1,3-di(2-thienyl)azulene (4) by a two-step sequence involving bromination and subsequent Pd-catalyzed amination. These compounds were characterized by spectroscopic analyses and the structure of 3a was determined by X-ray crystallographic analysis. Their HOMO energy levels were estimated using their electrochemical oxidation potentials, and these compounds were used as a hole-injecting material in organic light-emitting devices. The device with 3a showed greater durability than that with copper phthalocyanine.  相似文献   

4.
The novel tetrasubstituted metal-free phthalocyanine (5) and metallophtalocyanines (6, 7 and 8) bearing four 19-membered dithiadiazadioxa macrocyclic moieties on peripheral positions have been synthesized by cyclotetramerization reaction of phthalonitrile derivative (4) in a multi-step reaction sequence. The new compounds were characterized by a combination of IR, 1H NMR, 13C NMR, UV-Vis, elemental analysis and MS spectral data.  相似文献   

5.
Zinc(II) and mercury(II) thiocyanate complexes with nicotinamide, bis(nicotinamide-N)-bis(thiocyanato-N)zinc(II) (1) and catena-[nicotinamide-N-(μ-thiocyanato-S,N)(thiocyanato-S)mercury(II)] (2), have been prepared and characterized by spectroscopic, thermal and X-ray crystallographic methods. The vibrational bands of diagnostic value are compared to the values of the free ligand and the data are in good correlation with the X-ray results. Centrosymmetrical hydrogen bonded dimers are found, R22(10) in 1 and R22(8) in 2.  相似文献   

6.
The novel tetrasubstituted metal-free phthalocyanine (6) and metallophthalocyanines (7, 8) bearing four 14-membered tetraaza macrocycles moieties on peripheral positions have been synthesized by cyclotetramerization reaction of phthalonitrile derivative (5) in a multi-step reaction sequence. The new compounds were characterized by a combination of IR, 1H NMR, 13C NMR, UV-vis, elemental analysis and MS spectral data.  相似文献   

7.
Schiff base N,N′-bis(salicylidene)-p-phenylenediamine (LH2) complexed with Pt(en)Cl2 and Pd(en)Cl2 provided [Pt(en)L]2 · 4PF6 (1) and Pd(Salen) (2) (Salen = N,N′-bis(salicylidene)-ethylenediamine), respectively, which were characterized by their elemental analysis, spectroscopic data and X-ray data. A solid complex obtained by the reaction of hexafluorobenzene (hfb) with the representative complex 1 has been isolated and characterized as 3 (1 · hfb) using UV–Vis, NMR (1H, 13C and 19F) data. A solid complex of hfb with a reported Zn-cyclophane 4 has also been prepared and characterized 5 (4 · hfb) for comparison with complex 3. The association of hfb with 1 and 4 has also been monitored using UV–Vis and luminescence data.  相似文献   

8.
The reaction of the labile compound [Re2(CO)8(CH3CN)2] with 2,3-bis(2-pyridyl)pyrazine in dichloromethane solution at reflux temperature afforded the structural dirhenium isomers [Re2(CO)8(C14H10N4)] (1 and 2), and the complex [Re2(CO)8(C14H10N4)Re2(CO)8] (3). In 1, the ligand is σ,σ′-N,N′-coordinated to a Re(CO)3 fragment through pyridine and pyrazine to form a five-membered chelate ring. A seven-membered ring is obtained for isomer 2 by N-coordination of the 2-pyridyl groups while the pyrazine ring remains uncoordinated. For 2, isomers 2a and 2b are found in a dynamic equilibrium ratio [2a]/[2b]  =  7 in solution, detected by 1H NMR (−50 °C, CD3COCD3), coalescence being observed above room temperature. The ligand in 3 behaves as an 8e-donor bridge bonding two Re(CO)3 fragments through two (σ,σ′-N,N′) interactions. When the reaction was carried out in refluxing tetrahydrofuran, complex [Re2(CO)6(C14H10N4)2] (4) was obtained in addition to compounds 1-3. The dinuclear rhenium derivative 4 contains two units of the organic ligand σ,σ′-N,N′-coordinated in a chelate form to each rhenium core. The X-ray crystal structures for 1 and 3 are reported.  相似文献   

9.
The phthalodinitrile derivative 1 was prepared by the reaction of 4-nitrophthalonitrile and 1,3-dimethoxy-4-tert-butylcalix[4]arene in dry dimethylsulfoxide as the solvent, in the presence of the base K2CO3, by nucleophilic substitution of an activated nitro group in an aromatic ring. The tetramerization of compound 1 gave a binuclear zinc(II) phthalocyanine and a metal-free phthalocyanine of the ball type, 2 and 3, respectively. Its condensation with 4,5-bis(hexylthio)phthalonitrile results in a binuclear phthalocyanine of the clamshell type, 4. The newly synthesized compounds were characterized by elemental analysis, UV–Vis, IR, MS and 1H NMR spectra. The electronic spectra exhibit an intense π → π transition with characteristic Q and B bands of the phthalocyanine core. The electrochemical properties of 24 were examined by cyclic voltammetry in non-aqueous media. The voltammetric results showed that while there is no considerable interaction between the two phthalocyanine rings in 4, the splitting of a molecular orbital occurs as a result of the strong interaction between the phthalocyanine rings in 2 and 3.  相似文献   

10.
The synthesis of tricyclic compounds on functionalized cyclam core is described. The addition of four methyl acrylate molecules and consecutive condensation of this derivative with ethylenediamine resulted in formation of 1,4,8,11-tetrakis(2-(N-(2-aminoethyl)carbamoyl)ethyl)-1,4,8,11-tetraazacyclotetradecane (3). Compound 3 was the substrate for further condensation with dialdehydes: iso-phthaldialdehyde and 2,6-pyridinedicarbaldehyde, resulting in spontaneous macrocycle ring closure to give tricyclic derivatives: 1,11:4,8-bis(benzene-1,3-diyl-bis(2-(N-(2-formidoylethylene)carbamoyl)ethylene))-1,4,8,11-tetraazacyclotetradecane (4) in the reaction of 3 with iso-phthaldialdehyde and three isomers: 1,4:8,11-bis(pyridine-2,6-diyl-bis(2-(N-(2-formidoylethylene)carbamoyl)ethylene))-1,4,8,11-tetraazacyclotetradecane (5A), 1,11:4,8-bis(pyridine-2,6-diyl-bis(2-(N-(2-formidoylethylene)carbamoyl)ethylene))-1,4,8,11-tetraazacyclotetradecane (5B), and 1,8:4,11-bis(pyridine-2,6-diyl-bis(2-(N-(2-formidoylethylene)carbamoyl)ethylene))-1,4,8,11-tetraazacyclotetradecane (5C) when 2,6-pyridinedicarbaldehyde was used. The compounds 4, 5B, and 5C were identified crystallographically. The isolated 5A converted in solution into the mixture of 5B and 5C as monitored by the 1H NMR spectroscopy. The tricycle 5 is able to accept two manganese(II) metal ions by reacting with manganese(II) dichloride with simultaneous diprotonation of 5. Structure of the resulting Mn2(5BH2)Cl6·(CH3OH)2(H2O)2 was determined crystallographically.  相似文献   

11.
4-[2-(Phenylthio)ethoxy]phthalonitrile 3 was synthesized by nucleophilic displacement of nitro group in 4-nitrophthalonitrile with 2-(phenylthio)ethanol 1. The metal-free phthalocyanine 4 was prepared by the reaction of a dinitrile monomer with 2-(dimethylamino)ethanol. Ni(II), Co(II), Cu(I) phthalocyanines 5, 7, 8 were prepared by reaction of the dinitrile compound with the chlorides of Ni(II), Co(II), Cu(I) in DMAE. Zn(II) phthalocyanine 6, was prepared by reaction of the dinitrile compound with the acetates of Zn(II) in DMAE. Electrochemical behaviours of novel metal-free, Co(II) and Zn(II) phthalocyanines were investigated by cyclic voltammetry, potential differential pulse voltammetry techniques. The new compounds were characterized by a combination of IR, 1H NMR, 13C NMR, UV–Vis, elemental analysis and MS spectral data.  相似文献   

12.
Asymmetric transfer hydrogenation of ketones with chiral molecular catalysts is realized to be one of the most magnificent tools to access chiral alcohols in organic synthesis. A new chiral phosphinite compound N,N′-bis[(1S)-1-benzyl-2-O-(diphenylphosphinite)ethyl]ethanediamide (1), has been synthesized by the reaction of chlorodiphenylphosphine with N,N′-bis[(1S)-1-benzyl-2-hydroxyethyl]ethanediamide under argon atmosphere. The oxidation of 1 with aqueous hydrogen peroxide, elemental sulfur or grey selenium in toluene gave the corresponding oxide 1a, sulfide 1b and selenide 1c, respectively. Pd, Pt and Ru complexes were obtained by the reaction of 1 with [MCl2(cod)] (M: Pd 1d, Pt 1e) and [Ru(p-cymene)Cl2]21f, respectively. All these new complexes were characterized by using NMR, FT-IR spectroscopies and microanalysis. Additionally, as a demonstration of their catalytic reactivity, the ruthenium complex 1f was tested as catalyst in the asymmetric transfer hydrogenation reactions of acetophenone derivatives with iPrOH was also investigated.  相似文献   

13.
A series of new para-substituted (E)-(N)-styrylcarbazoles, i.e., eight (E)-9-[2-(aryl)ethenyl]-9H-carbazoles (5-12) and 1,4-bis[(E)-2-(9H-carbazol-9-yl)vinyl]benzene (13), have been synthesized in high yield and stereoselectively by a sequential silylative coupling-Hiyama coupling reaction, i.e., coupling of commercially available 9-vinylcarbazole with vinyltriethoxysilane or divinyltetramethyldisiloxane in the presence of [RuHCl(CO)(PCy3)2] (I), followed by Pd (II) catalyzed cross-coupling with para-substituted iodobenzenes.The tandem procedure has facilitated the synthesis of 13. X-ray structures of the intermediate silylvinylcarbazole (4), as well as products 12 and 13 have been obtained.  相似文献   

14.
Takuma Tsubusaki 《Tetrahedron》2009,65(45):9448-8114
The 4,4-bis(ethoxycarbonyl)-3,4-dihydro-2(1H)-quinolinones 2 were easily synthesized by the oxidative 6-endo-trig cyclization of 2-[2-(N-arylamino)-2-oxoethyl]malonates 1 with manganese(III) acetate in good to excellent yields. The same reaction of N-(2,4-dimethoxyphenyl)-substituted malonate 1t exclusively produced the 5-exo-cyclized 4,4-bis(ethoxycarbonyl)-1-azaspiro[4,5]deca-6,9-diene-2,8-dione 5t instead of the corresponding dihydroquinolinone. The regioselectivity during the cyclization could be explained by the difference in the activation energy of the transition state of the 6-endo/5-exo cyclization.  相似文献   

15.
N-Phenyl-4-(6-phenylimidazo[2,1-b]thiazol-5-yl)thiazol-2-amines (6a-q) have been synthesized by the Hantzsch thiazole reaction of 2-chloro-1-(6-phenylimidazo[2,1-b]thiazol-5-yl)ethanones (4a-e) with suitably substituted thioureas using microwave heating. The ethanones (4a-e) were prepared by the reaction of 6-phenylimidazo[2,1-b]thiazoles (3a-e) with chloroacetylchloride in refluxing 1,4-dioxane whereas the thiazoles (3a-e) were synthesized by the reaction of 2-bromo-1-phenylethanones (2a-e) with thiazol-2-amine in refluxing acetone.  相似文献   

16.
The reaction of N-(5-methyl-2-thienylmethylidene)-2-thiolethylamine (1) with Fe2(CO)9 in refluxing acetonitrile yielded di-(μ3-thia)nonacarbonyltriiron (2), μ-[N-(5-methyl-2-thienylmethyl)-η11(N);η11(S)-2-thiolatoethylamido]hexacarbonyldiiron (3), and N-(5-methyl-2-thienylmethylidene)amine (4). If the reaction was carried out at 45 °C, di-μ-[N-(5-methyl-2-thienylmethylidene)-η1(N);η1(S)-2-thiolethylamino]-μ-carbonyl-tetracarbonyldiiron (5) and trace amount of 4 were obtained. Stirring 5 in refluxing acetonitrile led to the thermal decomposition of 5, and ligand 1 was recovered quantitatively. However, in the presence of excess amount of Fe2(CO)9 in refluxing acetonitrile, complex 5 was converted into 2-4. On the other hand, the reaction of N-(6-methyl-2-pyridylmethylidene)-2-thiolethylamine (6) with Fe2(CO)9 in refluxing acetonitrile produced 2, μ-[N-(6-methyl-2-pyridylmethyl)-η1 (Npy);η11(N); η11(S)-2-thiolatoethylamido]pentacarbonyldiiron (7), and μ-[N-(6-methyl-2-pyridylmethylidene)-η2(C,N);η11(S)-2- thiolethylamino]hexacarbonyldiiron (8). Reactions of both complex 7 and 8 with NOBF4 gave μ-[(6-methyl-2-pyridylmethyl)-η1(Npy);η11(N);η11(S)-2-thiolatoethylamido](acetonitrile)tricarbonylnitrosyldiiron (9). These reaction products were well characterized spectrally. The molecular structures of complexes 3, 7-9 have been determined by means of X-ray diffraction. Intramolecular 1,5-hydrogen shift from the thiol to the methine carbon was observed in complexes 3, 7, and 9.  相似文献   

17.
Giuseppe Faita 《Tetrahedron》2010,66(16):3024-5854
The asymmetric Friedel-Crafts reaction between methyl (E)-2-oxo-4-aryl-3-butenoates (1a-c) and activated benzenes (2a-d) has been efficiently catalyzed by the ScIII triflate complex of (4′S,5′S)-2,6-bis[4′-(triisopropylsilyl) oxymethyl-5′-phenyl-1′,3′-oxazolin-2′-yl]pyridine (pybox 3). The 4,4-diaryl-2-oxo-butyric acid methyl esters (4) are usually formed in good yields and the enantioselectivity is up to 99% ee. The sense of the stereoinduction can be rationalized with the same octahedral complex (10) between 1, pybox 3 and Sc triflate already proposed for other reactions involving pyruvates, and catalyzed by the same complex.  相似文献   

18.
The reaction of P4S10 (1) with N,N′-diphenylurea (PhNH)2CO (2) results in new heterocyclic compounds: the pyridinium salt of 1,3-diphenyl-2-sulfido-2-thioxo-1,3-diaza-2λ5-phosphetidine (3) (with a P–N–C–N cycle) and the pyridinium salt of 1,4-diphenyl-2,5-disulfido-2,5-dithioxo-1,4-dithiadiaza-2λ5,5λ5-diphosphinane (4), containing the (P–S–N)2 cycle and the cyclic thiophosphates [pyH]2[P2S8] (5), [pyH]2[P2S7] (6) and [pyH]3[P3S9] (7). A similar reaction, but carried out with N,N′-diphenylthiourea (PhNH)2CS (8), leads to the formation of 4 and 6. pyPS2Cl (9), used as an alternative starting material, also yields compounds 3, 4, 5, and further [pyH][PS2Cl2] (10) and S8 after reaction with 2. Compound 3 reacts with Pd(CH3COO)2, with the formation of the complex [Pd(Ph2N2COPS2)2] (11). The crystal structures of 3 and 7 were determined by single-crystal X-ray diffraction.  相似文献   

19.
A series of N-(2-pyridyl)benzamides (1)-(11) and their nickel complexes, [N-(2-pyridyl)benzamide]dinickel(II) di-μ-bromide dibromide (12)-(16) and (aryl)[N-(2-pyridyl)benzamido](triphenylphosphine)nickel(II) (17)-(24), were synthesized and characterized. The single-crystal X-ray analysis revealed that 12 and 14 are binuclear nickel complexes bridged by bromine atoms and each nickel atom adopts a distorted trigonal bipyramidal geometry. The key feature of the complexes 17, 19 and 23 is each has a six-membered nickel chelate ring including a deprotonated secondary nitrogen atom and an O-donor atom. The nickel complexes show moderate to high catalytic activity for ethylene oligomerization with methylaluminoxane (MAO) as cocatalyst. The activity of 12-16/MAO systems is up to 3.3 × 104 g mol−1 h−1 whereas for 17-24/MAO systems it is up to 4.94 × 105 g mol−1 atm−1 h−1. The influence of Al/Ni molar ratio, reaction temperature, reaction period and PPh3/Ni molar ratio on catalytic activity was investigated.  相似文献   

20.
The reaction of primary amines RNH2 (R: Me, Et, iPr, tBu and Ph) with 1,2-dibromoethane gave N,N′-disubstituted ethylenediamines R-NH-CH2CH2-NH-R (1) in yields ranging from 10% (1a; R=Me) to 70% (1d, R=tBu; 1e, R=Ph). Piperazines and N-substituted polyethyleneimines were identified (1H NMR, 13C NMR and EI-MS) as side products of the reaction and isolated by fractional distillation. The piperazines 2 are formed in yields of 3-10% and can be separated from the diamines 1 in all cases, except for R=Me and Ph. The polyamine homologues RNH-[CH2CH2NR]n-H (3-5) were isolated in yields ranging from 0.1% (n=4, R=iPr) to 14% (n=2, R=iPr). The yields of 1 increase with the size of the substituent R, no obvious trend exists for the yields of the side products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号