首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The reactions between five ferrocenyl derivatives containing both a CO and at least an imidazole or pyridine nitrogen atom and AgPF6, AgOTf, or [Cu(NCCH3)4]PF6 precursors were studied. The ligand {[bis(2-pyridyl)amino]carbonyl}ferrocene (L3), derived from (2-pyridyl)amine, favored tetrahedral coordination of Ag+ (with two ligands) and of Cu+ (with two acetonitrile ligands left from the precursor). In all the other ligands, both metal centers coordinated linearly to two ligands, preferring the imidazole or pyridinic nitrogen to other nitrogen atoms (amine) or oxygen donors.When the counter anions were triflate, the crystal structure showed a dimerization of the complex, with the ferrocenyl moieties occupying cis positions, by means of a weak Ag?Ag interaction. This was shown experimentally in the crystal structure of complex [Ag(L1)2]OTf (L1 = ferrocenyl imidazole) and in the presence of peaks corresponding to {Ag2(L2)3(OTf)}+ and {Ag2(L2)4(OTf)}+ in the mass spectra of [Ag(L2)2]OTf (L2 = ferrocenyl benzimidazole). In all complexes containing PF6, there was no evidence for dimerization. Indeed, in the crystal structure of [Ag(L2)2]PF6, the ferrocenyl moieties occupy trans positions and the metal centers are far from each other. DFT calculations showed that the energy of the cis and trans conformers is practically the same and the balance of crystal packing forces leads to dimerization when triflate is present.  相似文献   

2.
The present work provides a brief summary review of the chemistry of luminescent gold(I) alkynyls and their ability to form heterometallic complexes. A series of luminescent heterometallic gold(I)-rhenium(I) alkynyl complexes has been synthesized and characterized. Their electrochemical and photophysical properties have been studied and their emission origins elucidated.  相似文献   

3.
The reaction of 1,2- and 1,3-benzenedithiol C6H4(SH)2 with chloro(phosphine)gold(I) complexes R3PAuCl (R = Et, Ph) in the presence of triethylamine in tetrahydrofuran gives stable gold(I) complexes 1,2-C6H4(SAuPR3)2 [R = Et ( 1 ) and Ph ( 2 )] or 1,3-C6H4(SAuPPh3)2 ( 3 ), respectively, in high yield. The compounds have been characterized by analytical and NMR spectroscopic data. From the reaction of 1,2-C6H(SH)2 with Et3P? AuCl a by-product [(Et3P)2Au]+ [Au(1,2? C6H4S2)2]? ( 4 ) has also been isolated in low yield. The crystal structures of compounds 2 and 4 have been determined by single crystal X-ray diffraction. The gold(I) atoms in complex 2 are two-coordinate with bond angles S? Au? P of 175.2(1) and 159.5(1)°, Au? S bond distances of 2.304(1) and 2.321(1) å, and a short Au…?Au contact of 3.145(1) Å. The gold(I) atom in the cation of complex 4 is also linearly two-coordinate with a P? Au? P angle of 170.1(1) Å and Au? P distances of 2.296(3) and 2.298(3) Å. The geometry of the anion in 4 shows a square-planar coordination of gold(III) by two chelating 1,2-benzenedithiolate ligands with Au? S distances between 2.299(3) and 2.312(3) Å (for two crystallographically independent, centrosymmetrical anions in the unit cell).  相似文献   

4.
The present study reports the synthesis and crystal structure of four novel gold(I) complexes with di-2-pyridyl ketone N(4)-ethylthiosemicarbazone (L1) and 2-acetylfuran-4-methyl-3-thiosemicarbazone (L2). All the gold(I) complexes were observed with monodentate thiosemicarbazones and exhibited gold(I) ions with linear geometries, bound to a sulfur atom of the ligand and a halogen ion (Br? or Cl?). The crystal structures of gold complexes with Br? and thiosemicarbazone are the first examples reported. Interestingly, 2[AuBr(HL1)]2Br was observed to have a Au?Au length of 3.155(8) Å, and this distance suggests an unusual Au?Au interaction in the solid state. The ability of the thiosemicarbazones and the corresponding gold(I) complexes to bind to DNA was studied by UV-vis and emission spectroscopy. The effect on cell viability of the compounds was evaluated against human breast cancer cell lines. The results show that the gold(I) complexes exhibit more potent inhibition of tumor growth than the free ligands.  相似文献   

5.
Two new N-pyrazole, P-phosphinite hybrid ligands 3-(3,5-dimethyl-1H-pyrazol-1-yl)propyldiphenylphosphinite (L3) and 2-(3,5-diphenyl-1H-pyrazol-1-yl)ethyldiphenylphosphinite (L4) are presented. The reactivity of these ligands and two other ligands reported in the literature (3,5-dimethyl-1H-pyrazol-1-yl)methyldiphenylphosphinite (L1) and 2-(3,5-dimethyl-1H-pyrazol-1-yl)ethyldiphenylphosphinite (L2) towards [RhCl(CO)2]2 (1) have been studied and complexes [RhCl(CO)L] (L = L2 (2), L3 (3) and L4 (4)) have been obtained. For L1 only decomposition products have been achieved. All complexes were fully characterised by analytical and spectroscopic methods and the resolution of the crystalline structure of complexes 2 and 3 by single-crystal X-ray diffraction are also presented. In these complexes, the ligands are coordinated via κ2(N,P) to Rh(I), forming metallocycles of seven (2 and 4) or eight (3) members and finish its coordination with a carbonyl monoxide and a trans-chlorine to phosphorus atom. In both complexes, weak intermolecular interactions are present. NMR studies of complexes 2-4 show the chain N-(CH2)x-O becomes rigid and the protons diastereotopic.  相似文献   

6.
Pyrazole IrHCl2(HRpz)P2 [P = PPh3, PiPr3; R = H, 3-Me], bis(pyrazole) [IrHCl(HRpz)2(PPh3)2]BPh4 and imidazole IrHCl2(HIm)(PPh3)2 derivatives were prepared by allowing the IrHCl2(PPh3)3 complex to react with the appropriate azole in refluxing 1,2-dichloroethane. Nitrile IrHCl2(CH3CN)(PPh3)2 and 2,2′-bipyridine (bpy) [IrHCl(bpy)(PPh3)2]BPh4 derivatives were also prepared using IrHCl2(PPh3)3 as a precursor. The complexes were characterised spectroscopically (IR and NMR) and a geometry in solution was also established. Protonation with Brønsted acid of pyrazole IrHCl2(Hpz)(PPh3)2 and imidazole IrHCl2(HIm)(PPh3)2 complexes proceeded with the loss of the azole ligands and the formation of the unstable IrHCl2(PPh3)2 derivative. Vinyl IrCl2{CHC(H)R1}(HRpz)P2 and IrCl2{CHC(H)R1}(HIm)P2 (R1 = Ph, p-tolyl, COOCH3; P = PPh3, PiPr3) complexes were prepared by allowing hydride-pyrazole IrHCl2(HRpz)P2 and hydride-imidazole IrHCl2(HIm)P2 to react with an excess of terminal alkyne in 1,2-dichloroethane. The complexes were characterised spectroscopically and by the X-ray crystal structure determination of the IrCl2{CHC(H)Ph}(Hpz)(PPh3)2 derivative.  相似文献   

7.
Four new ligands, (4-methyl-phenyl)-pyridin-2-ylmethylene-amine (A), (2,3-dimethyl-phenyl)-pyridin-2-ylmethylene-amine (B), (2,4-dimethyl-phenyl)-pyridin-2-ylmethylene-amine (C) and (2,5-dimethyl-phenyl)-pyridin-2-ylmethylene-amine (D), and their corresponding copper(I) complexes, [Cu(A)2]ClO4 (1a), [Cu(B)2]ClO4 (1b), [Cu(C)2]ClO4 (1c), [Cu(D)2]ClO4 (1d), [Cu(A)(PPh3)2]ClO4 (2a), [Cu(B)(PPh3)2]ClO4 (2b), [Cu(C)(PPh3)2]ClO4 (2c) and [Cu(D)(PPh3)2]ClO4 (2d), have been synthesized and characterized by CHN analyses, 1H and 13C NMR, IR and UV–Vis spectroscopy. The crystal structures of [Cu(B)2]ClO4 (1b), [Cu(C)2]ClO4 (1c) and [Cu(A)(PPh3)2]ClO4 · 1/2CH3CN (2a) were determined from single crystal X-ray diffraction. The coordination polyhedron about the copper(I) center in the three complexes is best described as a distorted tetrahedron. A quasireversible redox behavior is observed for the complexes.  相似文献   

8.
The first gold(I) trithiophosphite complexes were synthesised and fully characterised. Reaction of (tht)AuX (X = Cl, C6F5; tht = tetrahydrothiophene) with trithiophosphites (RS)3P (R = Me, Ph) and the bicyclic [(SCH2CH2S)PSCH2]2 (2L) afforded the corresponding molecular complexes (RS)3PAuX [R = Me, X = Cl (1); R = Me, X = C6F5 (2); R = Ph, X = Cl (3); R = Ph, X = C6F5 (4)], and 2L(AuX)2 [X = Cl (5), X = C6F5 (6)]. Reacting (tht)AuCl consecutively with two mole equivalents of (MeS)3P and then AgOTf, gave the ionic compound {[(MeS)3P]2Au}OTf (7). The compounds were characterised by multinuclear NMR spectroscopy, IR measurements and mass spectrometry, and the crystal and molecular structures of 1, 3, 6, two polymorphs of 2 as well as the known (MeO)3PAuCl (8) were determined by X-ray diffraction. The halide complexes 1 and 8 are isostructural and exhibit infinite chains of “crossed-sword”-type aurophilic interactions with Au?Au contact distances of 3.2942(3) and 3.1635(4) Å, respectively. Complex 6 exhibits a long Au?Au contact of 3.4671(9) Å. Au?S interactions between 3.3455(7) and 3.520(2) Å are present in the structures of 1 and one polymorph of 2.  相似文献   

9.
Some copper(I) complexes of the formula [Cu(L)(PPh3)2]X (1-4) [where L = 2-phenyl-3-(benzylamino)-1,2-dihydroquinazolin-4(3H)-one; PPh3 = triphenylphosphine; X = Cl, NO3, ClO4 and BF4] have been prepared and characterized on the basis of elemental analysis, IR, UV-Vis and 1H NMR spectral studies. The representative complex of the series 4 has been characterized by single crystal X-ray diffraction which reveal that in the complex the central copper(I) ion assumes the irregular distorted-tetrahedral geometry. Cyclic voltammetry of the complexes indicate a quasireversible redox behavior corresponding to Cu(II)/Cu(I) couple. All the complexes exhibit intraligand (π → π) fluorescence with high quantum yield in dichloromethane solution.  相似文献   

10.
Copper(I) complexes including diimine ligands of the bicinchoninic acid (BCA) and bathocuproinedisulfonic acid (BCS) families and water-soluble phosphines have been synthetized, characterized and investigated for their in vitro anticancer potential against human tumor cell lines representing examples of lung, breast, pancreatic and colon cancers and melanoma. All copper complexes exhibited moderate to high cytotoxic activity and the ability to overcome cisplatin resistance. Remarkably, growth-inhibitory effects evaluated in human non-transformed cells revealed a preferential cytotoxicity versus neoplastic cells. The remarkable cytotoxic effect towards BxPC3 pancreatic cancer cells, notoriously poor sensitive to cisplatin, was not related to a DNA or proteasome damage.  相似文献   

11.
A series of five gold(I) halide complexes with the two isomeric methoxy-substituted triarylphosphines, tris(2-methoxyphenyl)phosphine [P(oanis)3], [AuP(oanis)3X] [for X = Cl, (1); X = Br, (2) and X = I, (3)] and tris(4-methoxyphenyl)phosphine [P(panis)3], [AuP(panis)3X] [for X = Br (4) and X = I (5)] have been synthesized and characterized by single crystal X-ray diffraction and solution 31P{1H} NMR spectroscopy. The structure determinations confirm the expected presence of linear two-coordination about the gold centres in all five complexes with bond distance and angle data typical of this type of compound [Au–P, 2.239(2)–2.259(3) Å; Au–Cl, 2.294(2) Å; Au–Br, 2.385(2)–2.402(2) Å; Au–I, 2.546(1)–2.554(1) Å; P–Au–X; 175.3(1)–180°]. All analogues except the iodo complex 5 crystallize with one complex molecule in the crystallographic asymmetric unit. The bromo and iodo complexes 2 and 3 constitute a trigonal isomorphous set while the bromo complex 4 is also isomorphous with the previously determined chloro complex [AuP(panis)3Cl]. The 2-methoxy analogues are stabilized by significant methoxy-O?Au interactions.  相似文献   

12.
[Cu(H2O)(PzTz)2](NO3)2 (1), [Cu(μ-NO3)(NO3)(DMPzTz)] n (2), and [{Cu(NO3)(DPhPzTz)}2(μ-NO3)2] (3) [PzTz?=?2-(1-pyrazolyl)-1,3-thiazine, DMPzTz?=?2-(3,5-dimethyl-1-pyrazolyl)-1,3-thiazine, DPhPzTz?=?2-(3,5-diphenyl-1-pyrazolyl)-1,3-thiazine] have been prepared and characterized by elemental analysis, electronic spectroscopy, IR spectroscopy, electron paramagnetic resonance spectroscopy, magnetic susceptibility measurements, and single-crystal X-ray diffraction. Influence of ligand size on coordination to Cu(II) has been analyzed. The three complexes are five-coordinate and the coordination geometry can be described as a distorted trigonal bipyramid for 1 or a distorted square pyramid for 2 and 3. As a consequence of the strain induced by the ligands, 1 is a monomeric complex cation whereas 2 is a polymer and 3 is a dimer.  相似文献   

13.
Cationic nickel(II) complexes containing chelating O,O′-donor maltolate or ethyl maltolate ligands in conjunction with bidentate bisphosphine ligands Ph2P(CH2) n PPh2 were prepared by a one-pot reaction starting from nickel(II) acetate, bisphosphine, maltol (or ethyl maltol), and trimethylamine, and isolated as their tetraphenylborate salts. An X-ray structure determination of [Ni(maltolate)(Ph2PCH2CH2PPh2)]BPh4 shows that the maltolate ligand binds asymmetrically to the (slightly distorted) square-planar nickel(II) center. The simplicity of the synthetic method was extended to the synthesis of the known platinum(II) maltolate complex [Pt(maltolate)(PPh3)2]BPh4 which was obtained in high purity.  相似文献   

14.
The deaquation of two isostructural compounds of general formula [M(HL)2(H2O)2](NO3)2 (M=Co, Ni, HL=3,5-dimethyl-1H-pyrazole-1-carboxamidine) is discussed in the view of their crystal and molecular structure. The compounds contain the same number and type of hydrogen bonds of the adjacent nitrate ions, only in the opposite orientation. On the basis of their deaquation pattern such a small difference may be detected, i.e., methods of thermal analysis are sensitive enough to show very small structural differences.  相似文献   

15.
Mixed-ligand Cu(I) complexes containing phosphinesulfide ligands were synthesized, and the structure and emission properties were studied for the Cu(I) complexes. X-ray crystallographic study showed that a chelating phosphinesulfide and diimine are coordinated to Cu(I) center. Coordination geometry around Cu(I) center of each complex is described as a distorted tetrahedron. Some of the complexes show photoluminescence in the solid state.  相似文献   

16.
Two pyrazole-based polydentate ligands, 1,3-bis(5-methyl-3-phenylpyrazol-1-yl)-propan-2-ol (Hmppzpo) and 1,3-bis(5-methyl-3-p-isopropylphenylpyrazol-1-yl)-propan-2-ol (Hmcpzpo), have been synthesized. A third ligand, 1,3-bis(3,5-dimethylpyrazol-1-yl)-propan-2-ol (Hdmpzpo), has been synthetically modified. Seven new M(II) coordination compounds of general formula M2L2X2 (M?=?Zn, Ni; X?=?NO3 or ClO4; L?=?dmpzpo, mppzpo or mcpzpo) or MLX (M?=?Pd; L?=?dmpzpo; X?=?Cl) were synthesized and structurally characterized by elemental analysis and FT-IR analysis. The crystal structures of [Zn2(μ-dmpzpo-O,N,N′)2(NO3)2]?·?2H2O (1?·?2H2O), [Ni2(μ-dmpzpo-O,N,N′)2(CH3CN)2](ClO4)2 (2) and Pd(μ-dmpzpo-N,N′)Cl2 (4) were determined by single-crystal X-ray crystallography. The crystal structures show that complexes 1?·?2H2O and 2 are center-symmetric dinuclear compounds, with two metal ions bridged by two alkoxo groups and each metal ion with a distorted square-pyramidal environment. The palladium complex, 4, displayed square-planar coordination geometry around the Pd(II) ion with trans arrangement.  相似文献   

17.
18.
Complexes of Mn(II), Fe(II), Co(II), Ni(II), Cu(II) and Pd(II) with di-N-phenyl pyromellitic diimide (PhPMDI) and di-N-pyridyl pyromellitic diimide (PyPMDI) were prepared and characterized based on analytical, molar conductance, magnetic, IR, PMR, electronic and ESR data. Based on analytical and molar conductance, the complexes have been formulated as [M(PhPMDA)(H2O)2]n (M = Mn, Fe, Co, Ni), [Cu(PhPMDA)]n [Pd2(PhPMDA)Cl2(H2O)2], [M(PyPMDA)]n (M = Mn, Fe, Co, Ni and Cu) and [Pd2(PyPMDA)Cl2] In all these complexes PhPMDA acts as a mononegative bidentate ligand whereas PyPMDA acts as a mononegative tridentate one in the form of amide rather than imide. The geometries of the complexes have been proposed based on the electronic spectra. The various bonding parameters have been calculated from the ESR spectra of Cu(II) complexes.  相似文献   

19.
A one pot, multi-component CuAAC reaction has been developed for the generation of alkyl, benzyl or aryl substituted bi and tridentate pyridyl-1,2,3-triazole ligands from their corresponding halides, sodium azide and alkynes in excellent yields. The ligands have been fully characterized by elemental analysis, HR-ESMS, IR, 1H and 13C NMR and in the ferrocenyl substituted cases the structures were confirmed by X-ray crystallography. Additionally, we have examined the coordination chemistry of these ligands and found that a variety of geometrically diverse Cu(II) and Ag(I) complexes, including interesting tri and tetrasilver complexes, can be formed.  相似文献   

20.
基于密度泛函理论结合对称性破损态方法,选择不同的泛函方法和基组研究吡唑/草酸根混合配位的非对称双核铜配合物的磁学性质。结果表明,在B3LYP/def2-TZVP水平计算的磁耦合常数为-127.24cm~(-1),与实验值-129cm~(-1)基本吻合,可准确描述吡唑/草酸根混合配位的非对称双核铜配合物的磁学性质。磁轨道和自旋布居分析表明,顺磁中心Cu(Ⅱ)与桥联配体草酸根离子间存在较强的轨道相互作用,其磁轨道主要由顺磁中心Cu(Ⅱ)的3d_x2_(-y)2轨道、桥联配体草酸根离子的π键组成,顺磁中心Cu(Ⅱ)主要是自旋离域机理。配合物磁性与结构关系的研究表明,随着结构参数τ的增加,顺磁中心HS态和BS态自旋密度的平方差和自然磁轨道间重叠积分的平方随之增大,反铁磁性相互作用的贡献增大,配合物磁耦合常数J值减小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号