首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neutral palladium methyl chloride 2a-d [PdCH3(PˆP′)Cl] and cationic palladium methyl acetonitrile mono-triflate 3a-d [PdCH3(PˆP′)(CH3CN)](CF3SO3) complexes were synthesized and fully characterized (PˆP′ = 1a-d). All the neutral and cationic complexes containing a Cs-symmetric diphosphine exist in solution as a mixture of geometric isomers. The carbonylation at atmospheric pressure of the neutral and cationic complexes revealed that migratory insertion of carbon monoxide is not stereospecific in these systems. The neutral and cationic acyl complexes were formed in situ as mixtures of stereoisomers, which were characterized by means of NMR spectroscopy.The crystal structures of [Pd(1a)Cl]2(OTf)2 and 2d are described.  相似文献   

2.
The insertion of ethene and propene was investigated in palladium(II) acyl complexes of the type [PdC(O)CH3(PP′)(CH3CN)](OTf) modified with the Cs-symmetric diphosphines 2-4 and the parent ligand 1, described by C2v-symmetry and taken as a reference.Ethene insertion was investigated for acyl complexes containing the ligands 2 and 3. Two insertion products formed in a ratio of approximately 1:1 for both systems, irrespective of the electronic properties of the ligands.Propene as an α-olefin can insert according to a 1,2- or 2,1-insertion mode into a palladium acyl bond, arising regioselectivity issues. Moreover, due to the Cs-symmetry of the ligands, two stereoisomers can result upon insertion, as the alkyl group of the formed five-membered metallacycle can be cis or trans to each non-equivalent moiety. Propene insertion was indeed neither stereo- nor regioselective in the cases of 3 and 4, in which the products arising from both 1,2- and 2,1-insertion were observed. 2 displayed total control of stereo- and regioselectivity, with the formation of one primary insertion product. Similar regioselectivity was observed for the reference ligand 1. The regioisomeric distribution was different from equimolar for propene insertion, where the ratio of the products might be controlled by a combination of steric and electronic factors.  相似文献   

3.
In the present study we have analyzed the nature of palladium complexes in the catalytic system for selective carbon-sulfur bond formation via the addition of S-S and S-H bonds to alkynes. For the first time the mononuclear and dinuclear palladium complexes were clearly detected by DOSY NMR under the catalytic conditions. It was demonstrated that the concentration of these palladium complexes strongly depends on the amount of phosphine ligand available under reaction conditions.  相似文献   

4.
The high-resolution 1H and 13C NMR spectra of 1-vinylimidazole complexes with iron group metals were recorded. The contact coupling in these systems was established in the 1H and 13C NMR spectra. The applicability of the NMR spectra transformed by long-range hyperfine coupling for elucidating the molecular structure of the ligand was shown. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 6, pp. 1430–1433, June, 2005.  相似文献   

5.
Complexation equilibria and kinetics of exchange of chloroform and dichloromethane molecules between the cavity of cryptophane-E and bulk solution were investigated using NMR methods. Using one-dimensional magnetization transfer (1D-EXSY type sequence), chemical exchange rates were measured in different temperature ranges, limited by the equilibrium constant values of the complexes and the boiling points of the guest substances. From the kinetic data, activation energies were calculated using the Arrhenius equation. From the temperature-dependence of the association constant data, the enthalpy and entropy of complexation were estimated and compared with values for similar complexes of other cryptophanes.  相似文献   

6.
Within this study, coordination properties of the cyclic diphosphine 1,2,3,4-tetrahydro-1,4-diphenyl-1,4-benzodiphosphinine (bedip) are investigated, through the preparation of neutral and cationic Pt(II), Pt(IV) and Pd(II) complexes. The diphosphine acts as bridging ligand in the neutral Pt(II) and Pd(II) complexes, affording [MX(CH3)(μ-bedip)]2 (X = Cl, Br, I, CH3) species. Chelation is observed in all the remaining complexes. The molecular structures of [PtX(CH3)(μ-bedip)]2 (X = Br, I) and [PtI(CH3)3(bedip)] are also determined.  相似文献   

7.
Mononuclear, square-planar platinum(II) complexes involving derivatives of aromatic cytokinins as the ligands, and having the general formula cis-[Pt(Ln)2Cl2] (13) and trans-[Pt(Ln)2Cl2] (46), where n = 1–3, L1 = 2-chloro-6-(benzylamino)-9-isopropylpurine, L2 = 2-chloro-6-[(4-methoxybenzyl)amino]-9-isopropylpurine and L3 = 2-chloro-6-[(2-methoxybenzyl)-amino]-9-isopropylpurine, have been synthesized and characterized by elemental analysis, MALDI-TOF mass, FT IR, 1H, 13C, 15N and 195Pt NMR spectral measurements. Dynamic cis-to-trans isomerization process of complex 1 in N,N′-dimethylformamide (DMF) has been investigated by means of multinuclear NMR spectroscopy. The solid-state structures of 1, 4 · (DMF)2, and 5 have been determined by single crystal X-ray analysis. X-ray structures revealed that the heterocyclic ligands are coordinated to platinum via nitrogen atom N(7) in all the complexes studied. In vitro cytotoxicity of the prepared complexes against MCF7, G361, K562, and HOS has been evaluated. Owing to low solubility of the complexes in water, the cytotoxicity has been only tested up to 5 μM concentration. Unfortunately, all complexes have been found to be non-cytotoxic in the accessible concentration range.  相似文献   

8.
This work describes the synthesis, characterisation and reactivity of new methylallyl Pd(II) complexes that contain bidentate 2-(methylthio-N-benzylidene)anilines as ligands. The reaction of the binuclear complex [(η3-Me-allyl)Pd(μ-Cl)2] with AgBF4 causes the total abstraction of the chloride bridges, with the subsequent formation of an intermediary fragment of Pd(II). This fragment in turn reacts with neutral bidentate 2-(methylthio-N-benzylidene)anilines to give cationic complexes of Pd(II) of general formula [(η3-Me-allyl)Pd(η2-S,N-MeSC6H4NCHC6H4(X)Y)]BF4 [X=H, Y=H (1); X=F, Y=H (2); X=Me, Y=H (3); X=H, Y=Cl (4); X=H, Y=Me2N (5); X=H, Y=NO2 (6)]. The new complexes were characterised by means of elemental analysis, IR, NMR [1H, 19F{1H}, 13C{1H}, 31P{1H}, Dept, 1H-1H-COSY, HSQC, HMBC] and mass spectroscopies. The reaction of the Pd(II) complexes with nucleophiles such as NaI, (EtO)2PS2K, KCN, KSCN or NaH lead to the deco-ordination of the bidentate ligands to give dimeric or polymeric complexes of Pd(II). The reactivity pattern observed is discussed by a theoretical analysis based on Fukui functions.  相似文献   

9.
Two coordination compounds of palladium(II) with N-allylimidazole (l) of the general formula [PdL4]Cl2 · 3H2O (1) and trans-[PdL2Cl2] (2) have been synthesized. The crystal and molecular structure of complexes 1 and 2 was established by single-crystal X-ray diffraction analysis. The X-ray structural data were supplemented by solid-state 13C NMR measurements (CP MAS and PASS 2D). The 1D and 2D NMR studies in solution reveal that complex 1 is unstable at room temperature and undergoes reversible decomposition to 2. The method for how to preserve a complex with four allyl-imidazole ligands in solution is shown.  相似文献   

10.
A family of three- and four-coordinated silver(I) complexes of formulas [Ag(PPh3)2L], [Ag(PPh3)L], and [AgL]n with N-thiophosphorylated thiourea and thioamide ligands of general formula RC(S)NHP(S)(OPri)2 [R = Ph, PhNH, iPrNH, tBuNH, NH2] have been studied by solid-state 109Ag and 31P CPMAS NMR spectroscopy. 109Ag NMR spectra have provided valuable structural information about Ag coordination, which is in good accordance with the available crystal structure data. The data presented in this work represent a significant addition to the available 109Ag chemical shifts and chemical shifts anisotropies. The silver chemical shift ranges for different P,S-environments and coordination state were discussed in detail. The 1J(31P–107/109Ag) and 2J(31P–31P) values were determined and analyzed.  相似文献   

11.
para-Hydrogen induced polarization (PHIP) NMR spectroscopy emerges as an efficient and robust method for on-line monitoring of gas-phase hydrogenation reactions. Here we report detailed investigations of supported ionic liquid phase (SILP) catalysts in a continuous gas-phase hydrogenation of propene with PHIP NMR spectroscopy. A relocation of the rhodium complex in the thin layer of ionic liquid in the SILP catalyst at the initial stage of the propene hydrogenation is demonstrated. PHIP NMR spectroscopy can provide profound insight into the evolution of SILP catalysts during hydrogenation reactions.  相似文献   

12.
The piperazine and triethylamine complexes of genistein, exhibiting high immunosuppressant activity, were ab initio modeled at RHF/6-31G** level and results were compared with those obtained for genistein–morpholine complexes by X-ray, NMR, and theoretical methods. The most stable genistein–piperazine complex is formed due to hydrogen bonding of genistein's OH group at position C7 to piperazine's nitrogen atom. In the most stable genistein–triethylamine complex genistein's OH group at position C4′ (position para to phenyl substituent) and trimethylamine nitrogen atom are engaged in hydrogen bond formation. The calculations confirmed our previous NMR conclusion that piperazine is more strongly complexed by genistein than is morpholine or triethylamine. The theoretical 13C NMR spectra correlate fairly well with the experimental spectra.  相似文献   

13.
From solid state NMR spectra, a lower shielding of poly(ethylene oxide) (PEO) protons, in contrast to higher shielding of PEO carbons, has been found for PEO/hydroxybenzene and PEO/LiCF3SO3 complexes in comparison with neat PEO. The same PEO chemical shifts were found both for crystalline and amorphous phase of PEO/LiCF3SO3 polymer electrolyte, confirming the same interaction in both phases. Measurements of 2D 1H CRAMPS exchange NMR spectra have been used to characterize proton distances in complexes of PEO and benzene derivatives. A close contact (∼ 0.3 nm) between aromatic and PEO protons was detected in some cases. From the measurements of the cross polarization 1H → 13C, using Lee-Goldburg irradiation of 1H nuclei, the distance between LiCF3SO3 carbon and the nearest PEO protons in the PEO/LiCF3SO3 complex was determined.  相似文献   

14.
Owing to its two unsymmetrical-NH_2 groups sited on different terminals, 2, 6-diaminocaproic acid (lysine) was used as a reactant for synthesizing a novel unsymmetrical Schiff base with salicylaldehyde on one side and ovanillin on the other for the first time. It is a new way to synthesize such a special unsymmetrical Schiff base. It is named "hetero bis-Schiff base" for distinguishing it from others. The synthesis method, formation mechanism as well as twelve new lanthanide complexes with the above ligand are reported and discussed herein. They were characterized by elementary analysis, molar conductivity, IR-spectra and especially by ~1H and ~(13)C NMR spectra. The results obtained may provide a new promising method for synthesizing similar unsymmetrical Schiff bases and their complexes.  相似文献   

15.
Nuclear magnetic resonances of alkali nuclei,7Li,23Na, and133Cs, as well as far infrared measurements are used to study alkali complexes of a bicyclic diazapolyoxa ligand—the dilactam of cryptand C222. Measurements were carried out in pyridine, tetrahydrofuran, acetonitrile, nitromethane, dimethylformamide, and aqueous solutions. The complexing ability of the dilactam is similar to, but weaker than, that of the cryptand C222. The limiting chemical shifts of the complexed cations were solvent-dependent, indicating incomplete enclosure of the cation by the ligand. Formation constants of Li+ and Cs+ complexes were calculated from the chemical-shift dependence on the ligand/metal ion mole ratio.  相似文献   

16.
The chemistry of η3-allyl palladium complexes of the diphosphazane ligands, X2PN(Me)PX2 [X = OC6H5 (1) or OC6H3Me2-2,6 (2)] has been investigated.The reactions of the phenoxy derivative, (PhO)2PN(Me)P(OPh)2 with [Pd(η3-1,3-R′,R″-C3H3)(μ-Cl)]2 (R′ = R″ = H or Me; R′ = H, R″ = Me) give exclusively the palladium dimer, [Pd2{μ-(PhO)2PN(Me)P(OPh)2}2Cl2] (3); however, the analogous reaction with [Pd(η3-1,3-R′,R″-C3H3)(μ-Cl)]2 (R′ = R″ = Ph) gives the palladium dimer and the allyl palladium complex [Pd(η3-1,3-R′,R″-C3H3)(1)](PF6) (R′ = R″ = Ph) (4). On the other hand, the 2,6-dimethylphenoxy substituted derivative 2 reacts with (allyl) palladium chloro dimers to give stable allyl palladium complexes, [Pd(η3-1,3-R′,R″-C3H3)(2)](PF6) [R′ = R″ = H (5), Me (7) or Ph (8); R′ = H, R″ = Me (6)].Detailed NMR studies reveal that the complexes 6 and 7 exist as a mixture of isomers in solution; the relatively less favourable isomer, anti-[Pd(η3-1-Me-C3H4)(2)](PF6) (6b) and syn/anti-[Pd(η3-1,3-Me2-C3H3)(2)](PF6) (7b) are present to the extent of 25% and 40%, respectively. This result can be explained on the basis of the steric congestion around the donor phosphorus atoms in 2. The structures of four complexes (4, 5, 7a and 8) have been determined by X-ray crystallography; only one isomer is observed in the solid state in each case.  相似文献   

17.
1H, 13C and 15N NMR studies of gold(III), palladium(II) and platinum(II) chloride complexes with dimethylpyridines (lutidines: 2,3‐lutidine, 2,3lut; 2,4‐lutidine, 2,4lut; 3,5‐lutidine, 3,5lut; 2,6‐lutidine, 2,6lut) and 2,4,6‐trimethylpyridine (2,4,6‐collidine, 2,4,6col) having general formulae [AuLCl3], trans‐[PdL2Cl2] and trans‐/cis‐[PtL2Cl2] were performed and the respective chemical shifts (δ1H, δ13C, δ15N) reported. The deshielding of protons and carbons, as well as the shielding of nitrogens was observed. The 1H, 13C and 15N NMR coordination shifts (Δ1Hcoord, Δ13Ccoord, Δ15Ncoord; Δcoord = δcomplex ? δligand) were discussed in relation to some structural features of the title complexes, such as the type of the central atom [Au(III), Pd(II), Pt(II)], geometry (trans‐ or cis‐), metal‐nitrogen bond lengths and the position of both methyl groups in the pyridine ring system. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
Reactions of imidazolidine-2-thione (Imt), 1,3-diazinane-2-thione (Diaz) and 1,3-diazipane-2-thione (Diap) with mercury(II) selenocyanate in acetonitrile resulted in formation of 2?:?1 complexes. Both solid state and solution NMR, confirm the exocyclic sulfur atom to be the donor in all cases. 199Hg shielding tensors and anisotropies were calculated from the solid-state NMR spectra. Based on the solid NMR data a distorted tetrahedral disposition of ligands around mercury is proposed.  相似文献   

19.
The anisotropic effect of the planar nitrate anion NO3 has been ab initio calculated employing the Nucleus-Independent Chemical Shift (NICS) concept of von Ragué Schleyer and visualized as Iso-Chemical-Shielding Surfaces (ICSSs) of various (de)shieldings. Complexation-induced shifts in the 1H NMR spectra of nitrate/metal complexes or nitrate/receptor supramolecules can be separated now into anisotropic influences of the suitably coordinated nitrate anions and effects originating from differential sources.  相似文献   

20.
The complexes [M(C6F5)2(BIP)] (M = PdII or PtII, BIP = 2,6-bis[(1-phenylimino)ethyl]pyridine) have been synthesised and characterised as involving BIP as a bidentate chelate ligand. In solution they undergo 1,4 metallotropic shifts of the M(C6 F5)2 moiety, E,Z isomerisation of the pendant imine bond, and restricted C-C rotation of the pendant portion of the BIP ligand. 1H and 19F dynamic NMR studies yielded activation energies for these three types of fluxion. ΔG (298 K) values for the three processes were 89.6, 86.6 and 47.4kJmol−1 respectively for the PtII complex. Values for the PdII complex were significantly lower in magnitude, namely 71.6, 70.4 and 41.8 kJ mol−1 respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号