首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The title compound has been obtained in considerable yield by reacting Ru3(CO)12 with 2-pentynal-diethyl-acetal [CH3CH2CCC(H)(OEt)2] (PDA) in hydrocarbon solvents. The X-ray analysis shows that the title complex belongs to the well known family of the flyover derivatives. Some X-ray structural studies have been reported, many years ago, on di-iron flyover complexes; in contrast only a few examples of diruthenium derivatives have been structurally characterized.The complex contains ethoxy-groups which could potentially undergo hydrolysis in the presence of tetraethyl-orthosilicate (TEOS) in the presence of catalysts. Reactions of complex Ru2(CO)6[μ-η4-{EtC2C(H)(OEt)2}CO{EtC2C(H)(OEt)2}] with TEOS in the presence of HCl or of NaF (as catalysts) have been attempted. An inorganic-organometallic sol-gel material containing the skeleton of the complex has been obtained and characterized with IR-Raman, XRD on powders and SEM microscopy.  相似文献   

2.
Thermal treatment of C9H7SiMe2C9H7 and C9H7Me2SiOSiMe2C9H7 with Ru3(CO)12 in refluxing xylene gave the corresponding diruthenium complexes (E)[(η5-C9H6)Ru(CO)]2(μ-CO)2 [E = Me2Si (1), Me2SiOSiMe2 (2)]. A desilylation product [(η5-C9H7)Ru(CO)]2(μ-CO)2 (3) was also obtained in the latter case. Similar treatment of C9H7Me2SiSiMe2C9H7 with Ru3(CO)12 gave a novel indenyl nonanuclear ruthenium cluster Ru96-C)(CO)143522-C9H7)2 (5) with carbon-centered tricapped trigonal prism geometry, in addition to the diruthenium complex (Me2SiSiMe2)[(η5-C9H6)Ru(CO)]2(μ-CO)2 (4) and the desilylation product 3. Complex 4 can undergo a thermal rearrangement to form the product [(Me2Si)(η5-C9H6)Ru(CO)2]2 (6). The molecular structures of 1, 2, 4, 5, and 6 were determined by X-ray diffraction.  相似文献   

3.
Processes such as S-C and C-H bond activations as well as C-C coupling reactions have taken place in the synthesis of the new compound [Os3(CO)93233-{C5H5FeC5H3CCC(S)C(Fc)CHO}] (Fc = C5H4FeC5H5), which contains an aldehyde oxametallacycle. A reactivity study of it has been carried out. In addition, other new triosmium clusters such as [Os3(CO)932-CCFc)(μ,η1-SCCFc)], [Os3(CO)10(μ,η2-CCFc)(μ,η1-SCCFc)] and [Os3(CO)9(μ-CO)(μ32-FcCCSCCFc)] have been prepared from the reaction of [Os3(CO)10(NCMe)2] and FcCCSCCFc. All the compounds have been characterized by analytical and spectroscopic techniques. The crystal structures of [Os3(CO)932-CCFc)(μ,η1-SCCFc)] and [Os3(CO)93233-{C5H5FeC5H3CCC(S)C(Fc)CHO}] have been determined by X-ray crystallography and some electrochemical studies have also carried out.  相似文献   

4.
5.
The cyclopentadienylchromium carbonyl thiocarbonyls Cp2Cr2(CS)2(CO)n (n = 4, 3, 2, 1) have been studied by density functional theory using the B3LYP and BP86 functionals. The lowest energy Cp2Cr2(CS)2(CO)4 structure can be derived from the experimentally characterized unbridged Cp2Cr2(CO)6 structure by replacing the two terminal carbonyl groups furthest from the Cr-Cr bond with two terminal CS groups. The two lowest energy Cp2Cr2(CS)2(CO)3 structures have a single four-electron donor η2-μ-CS group and a formal Cr-Cr single bond of length ∼3.1 Å. In contrast to the carbonyl analogue Cp2Cr2(CO)5 these Cp2Cr2(CS)2(CO)3 structures are viable with respect to disproportionation into Cp2Cr2(CS)2(CO)4 and Cp2Cr2(CS)2(CO)2 and thus are promising synthetic targets. The lowest energy Cp2Cr2(CS)2(CO)2 structures have all two-electron donor CO and CS groups and short CrCr distances around ∼2.3 Å suggesting the formal triple bonds required to give the chromium atoms the favored 18-electron configurations. These Cp2Cr2(CS)2(CO)2 structures are closely related to the known structure for Cp2Cr2(CO)4. In addition, several doubly bridged structures with four-electron donor η2-μ-CS bridges are found for Cp2Cr2(CS)2(CO)2 at higher energies. The global minimum Cp2Cr2(CS)2(CO) structure is a triply bridged triplet with a CrCr triple bond (2.299 Å by BP86). A higher energy singlet Cp2Cr2(CS)2(CO) structure has a shorter Cr-Cr distance of 2.197 Å (BP86) suggesting the formal quadruple bond required to give each chromium atom the favored 18-electron configuration.  相似文献   

6.
The pyrolysis reaction of [Ru3(CO)10(dppe)], compound 1, in toluene yields as the main product [Ru4(CO)9(μ-CO){μ42-PCH2CH2P(C6H5)2}(μ44-C6H4)], compound 2. The X-ray structure of 2 shows a benzyne group coordinated to a square of ruthenium atoms and a μ42-PCH2CH2PPh2 fragment. Variable-temperature NMR experiments showed three independent dynamic processes: a rotation of the benzyne group, CO migration and a twisting movement of the CH2CH2 fragment. The thermolysis of [Ru3(CO)10(dfppe)], compound 3, (dfppe=1,2-bis(dipentafluorophenylphosphino)ethane, carried out under the same conditions, showed 3 to be stable.  相似文献   

7.
Oxidative-addition of PhTe2Ph to the furyne cluster [Ru3(CO)7(μ-H)(μ32-C4H2O){μ-P(C4H3O)2}(μ-dppm)] (1) results in the isolation of four complexes; (i) the previously reported 54-electron cluster [Ru3(CO)63-Te)2(μ-TePh)2(μ-dppm)] (5) which results from elimination of trifuryl phosphine, (ii) the furenyl cluster [Ru3(CO)5(μ-η2-C4H3O){μ-P(C4H3O)2}(μ-TePh)2(μ-dppm)] (6) which results from carbon-hydrogen bond formation and (iii) two new 50-electron complexes [Ru3(CO)5(μ-H)(μ32-C4H2O){μ-P(C4H3O)2}(μ-TePh)22-dppm)] (7) and [Ru3(CO)4(μ-H){P(C4H3O)3}(μ32-C4H2O){μ-P(C4H3O)2}(μ-TePh)22-dppm)] (8) both containing unsymmetrical furyne ligands. The structures of all the new compounds have been unambiguously established by single crystal X-ray crystallography. Further reactivity studies have provided a clear understanding of the relative sequence of the key oxidative-addition and reductive-elimination processes, showing that 6 is an intermediate in the formation of 7. DFT calculations have been used to shed light on the unsymmetrical binding of the furyne ligand in 7 and also to show that the adopted position of the heteroatom within the furyne ring can vary within complexes of this type.  相似文献   

8.
The reaction of with p-CH3C6H4S(O)2O(CH2)3C6H5 produces (η5-C5H5)(OC)3Mo(CH2)3C6H5. This is only the second structurally characterized organometallic species in which an aromatic moiety is separated by three or more methylene groups. The alkyl chain adopts a staggered conformation, the Mo-C(1)-C(2)-C(3)-C(4) unit is nearly coplanar, and the alkyl chain eclipses the trans-carbonyl group on Mo. NMR evidence indicates that this conformation is preserved in solution.  相似文献   

9.
Treatment of [W(CO)5THF] with diferrocenyl diselenide, Fc2Se2, yielded the novel metal-metal bonded tungsten(I) complex, [W2(μ-SeFc)2(CO)8] (1: Fc = ferrocenyl, [Fe(η5-C5H5)(η5-C5H4)]), which was characterised by NMR and IR spectroscopy, mass spectrometry, and X-ray crystallography. The corresponding tellurium derivative could not be prepared by an analogous route. The X-ray crystal structure of Fc2Te2 has also been determined.  相似文献   

10.
The chain coordination polymers [Na2(μ-H2O)(H2O)CB[5]]Cl2 · 6H2O (I), [Na3(μ-H2O)4(H2O)4(CNPy@CB[6])]Cl3 · 8H2O (II), and [Rb2(μ-H2O)2(CNPy@CB[6])]Cl2 · 8H2O (III) were prepared by heating (110°C) of a mixture of sodium or rubidium chloride, cucurbit[n]uril (CB[n], where n = 5, 6), 4-cyanopyridine, and water. According to X-ray diffraction data, binding of polynuclear cations with CB[n] in IIII occurs through coordination of the oxygen atoms of the cucurbit[n]uril portals to alkali metal atoms. Complexes IIII of the above composition isolated to the solid phase as supramolecular compounds with CB[n] were structurally characterized for the first time.  相似文献   

11.
The reaction between Ru3(μ-H){μ3-C2CPh2(OH)}(CO)9 and HCCPh, carried out in the presence of HBF4 · Me2O, afforded the cluster complexes Ru3(μ-H)(μ3-CPh2CCCCPh)(CO)9 (5) and Ru33-CPhCHCC(CPh2)CHCPh}(μ-CO)(CO)8 (6), both of which were characterised by single-crystal X-ray studies.  相似文献   

12.
Treatment of unsaturated [Os3(CO)83-Ph2PCH2P(Ph)C6H4}(μ-H)] (2) with tBuNC at room temperature gives [Os3(CO)8(CNBut)){μ3-Ph2PCH2P(Ph)C6H4}(μ-H)] (3) which on thermolysis in refluxing toluene furnishes [Os3(CO)7(CNBut){μ3-Ph2PCHP(Ph)C6H4}(μ-H)2] (4). Reaction of the labile complex [Os3(CO)9(μ-dppm)(NCMe)] (5) with tBuNC at room temperature affords the substitution product [Os3(CO)9(μ-dppm)(CNBut)] (6). Thermolysis of 6 in refluxing toluene gives 4. On the other hand, the reaction of unsaturated [Os3(CO)932-C7H3(2-Me)NS}(μ-H)] (7) with tBuNC yields the addition product [Os3(CO)9(CNBut){μ-η2-C7H3(2-Me)NS}(μ-H)] (8) which on decarbonylation in refluxing toluene gives unsaturated [Os3(CO)8(CNBut){μ32-C7H3(2-Me)NS}(μ-H)] (9). Compound 9 reacts with PPh3 at room temperature to give the adduct [Os3(CO)8(PPh3)(CNBut){μ-η2-C7H3(2-Me)NS(μ-H)] (10). Compound 8 exists as two isomers in solution whereas 10 occurs in four isomeric forms. The molecular structures of 3, 6, 8, and 10 have been determined by X-ray diffraction studies.  相似文献   

13.
The complex Ru44-S)(μ,η3-C3H5)2(CO)12 is prepared and examined by IR and NMR spectroscopy; its crystal structure is determined (an automatic Bruker-Nonius X8 Apex four-circle diffractometer equipped with a 2-D CCD-detector, 100 K, graphite-monochromated molybdenum source, λ = 0.71073 ?). The crystal belongs to the orthorhombic crystal system with unit cell parameters a = 19.3781(9) ?, b = 12.2898(7) ?, c = 10.1726(4) ?, V = 2422.6(2) ?3, space group Pnma, Z = 4, composition C18H10O12Ru4S, d x = 2.343 g/cm3. The molecule of point symmetry C 1 is situated on the mirror plane of the space group Pnma, two carbonyl groups at Ru2 and Ru3 atoms overlapping with the allylic ligand with a weight of 50% so that carbon atoms coincide. Thus, we have a racemic structure with two overlapping enantiomers of the molecule of Ru44-S)(μ,η3-C3H5)2(CO)12. Original Russian Text Copyright ? 2008 by I. Yu. Prikhod’ko, V. P. Kirin, V. A. Maksakov, A. V. Virovets, and A. V. Golovin __________ Translated from Zhurnal Strukturnoi Khimii, Vol. 49, No. 4, pp. 748–752, May–June, 2008.  相似文献   

14.
The synthesis of the bis(η5-indenyl)iron sandwich complexes (η5-1-SiMe3-C9H6)2Fe (3a), (η5-2-SiMe3-C9H6)2Fe (3b), [η5-1,2-(SiMe3)2C9H5]2Fe (4a) and [η5-1,3-(SiMe3)2C9H5]2Fe (4b), by the reaction of the appropriate lithium indenide salts [prepared from 1-SiMe3-C9H7 (2a), 2-SiMe3-C9H7 (2b), 1,2-(SiMe3)2C9H6 (2c) or 1,3-(SiMe3)2C9H6 (2d)] with ferrous chloride (1) in a 2:1 molar ratio is discussed. The solid-state structure of 4b was determined by single-crystal X-ray diffractometry. Complex 4b exists in a gauche conformation, showing that the indenyl ligands are sterically imposed by the bulk of the Me3Si substituents. The average Fe-C distance is 2.091(3) Å. Cyclovoltammetric studies indicate that 3 and 4 are redox-active with one-electron oxidations [E1/2=−270 to −360 mV versus Fc/Fc+, Fc=(η5-C5H5)2Fe].  相似文献   

15.
With copper(I) iodide as catalyst, σ-alkynyls, compounds (η5-C5H5)Cr(NO)2(CC-C6H5) (5), [(η5-C5H4)-COOCH3]Cr(NO)2(CC-C6H5) (10), and [(η5-C5H4)-COOCH3]W(CO)3(CC-C6H5) (13), were prepared from their corresponding metal chloride 1, 6 and 12. Structures of compound 3, 5 and 12 have been solved by X-ray diffraction studies. In the case of 5, there is an internal mirror plane passing through the phenylethynyl ligand and bisecting the Cp ring. The phenyl group is oriented perpendicularly to the Cp with an eclipsed conformation. The twist angle is 0° and 118.4° for -CC-Ph and two NO ligands, respectively. The orientation is rationalized in terms of orbital overlap between ψ3 of Cp, dπ of Cr atom, and π of alkynyl ligand, and complemented by molecular orbital calculation. The opposite correlation was observed on the chemical shift assignments of C(2)-C(5) on Cp ring in compounds 6 and 12, using HetCOR NMR spectroscopy. The electron density distribution in the cyclopentadienyl ring is discussed on the basis of 13C NMR data and compared with the calculations via density functional B3LYP correlation-exchange method.  相似文献   

16.
The bimetallic carbocation complex [{Cp(CO)2Fe}2(μ-C4H7)]PF6 reacted with trifluoroacetic acid to give the mononuclear cationic complex [Cp(CO)2Fe{η2-(CH2CHCH2CH3)}]PF6, which formed yellow orthorhombic crystals in the space group P212121 with a = 7.652(4), b = 13.422(7), c = 14.037(7); α = β = γ = 90.00 and Z = 4. The carbocation is coordinated to the metal in a η2-fashion forming a chiral metallacyclopropane type structure. The β-CH carbon (C9) is disordered over two positions (C9A and C9B), each having about 50% occupancy. This is attributed to there being both the R and S enantioface isomers in equal amounts in the crystal sample. NMR data indicate that the metallacyclopropane structure observed in the solid state is preserved in solution.  相似文献   

17.
Low temperature photoreaction between tungsten hexacarbonyl and ferrocenylacetylene yielded two unusual metal containing stable compounds, the tritungsten cluster, [W3(μ-η22- (H)CCFc)2(CO)12] (1), and ditungsten-1,4,5,8-ferrocenylcyclodecatetraene, [W2{μ-η2222-(Fc)CC(H)C(H)C(Fc)C(Fc)C(H)C(H)C(Fc)}(CO)6] (2). Both compounds were characterised by IR and 1H and 13C NMR spectroscopy and their molecular structures established by single crystal X-ray diffraction methods.  相似文献   

18.
The reaction between [Ru3(CO)10(NCMe)2] and [AuClPPh3] gave compound [Ru3(CO)10(μ-Cl)(μ-AuPPh3)] (1) in quantitative yield under very mild conditions. The reaction of 1 with 4-mercaptopyridine (4-pyS) using ultrasonic reaction conditions gave the heteronuclear compound [Ru3(CO)10(μ-AuPPh3)(μ-SC5H4N)] (2) in moderate yield. There was no spectroscopic evidence that indicates the formation of the hydride isolobal analog in this reaction. The homonuclear cluster [Ru3(CO)8(μ-H)(μ-SC5H4N)(μ-dppe)] (3) was prepared by a selective reaction employing the ruthenium-diphosphine derivative [Ru3(CO)10(μ-dppe)] (dppe = 1,2-bis(diphenylphosphine)ethane) with 4-pyS in THF solution. The isolobal analog to compound 3, compound [Ru3(CO)8(μ-AuPPh3)(μ-SC5H4N)(μ-dppe)] (4) was synthesized by the reaction between compound 2 and dppe in refluxing dichloromethane. Compounds 1-4 were characterized in solution by spectroscopic methods and the molecular structure of compounds 2 and 3 in the solid state was obtained by single crystal X-ray diffraction studies.  相似文献   

19.
Reactions of the nickel(0) complexes [Ni(cod)2] (in the presence of PP or [Ni(PPh3)2C2H4] with vinyl-siloxanes, -silanes or -silazanes yield, by displacement of alkene ligand, the new nickel π-complexes [Ni(PPh3)2(η-CH2CHSi(OSiMe3)3)] (2), [{Ni(PPh3)}2{μ-(η-{(CH2CH)2SiMe}2O})] (4), [Ni(PPh3){η4-CH2CHSi(Me)(μ-O)}3] (5), [{Ni(η-CH2CHSiMe2)2O}(η-CH2CHSiMe3)] (7) and the known complexes [Ni(PPh3)2(η-CH2CHSiMe3)] (1), [{Ni(PPh3)}2{μ-(η-(CH2CH)4Si})] (3), [{Ni(PPh3)(η-CH2CHSiMe2)2NH}] (6) obtained by a simple one pot synthesis, more efficiently than in hitherto published reports. The X-ray crystal structure of (1) shows a trigonal planar environment around the nickel atom.  相似文献   

20.
The compound [Os3(CO)10(μ-Cl)(μ-AuPPh3)] (2) was prepared from the reaction between [Os3(CO)10(NCMe)2] (1) and [AuClPPh3] under mild conditions. The reaction of 2 with 4-mercaptopyridine (4-pyS) ligand yielded compounds [Os3(CO)10(μ-H)(μ-SC5H4N)] (4), formed by isolobal replacement of the fragment [AuPPh3]+ by H+ and [Os3(CO)10(μ-AuPPh3)(μ-SC5H4N)] (5). [Os3(CO)10(μ-H)(μ-SC5H4N)] (4) was also obtained by substitution of two acetonitrile ligands in the activated cluster 1 by 4-pyS, at room temperature in dichloromethane. Compounds 2-5 were characterized spectroscopically and the molecular structures of 4 and 5 in the solid state were obtained by single crystal X-ray diffraction studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号