首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A cyclic complex [Ni(12)(chp)(12)(O(2)CMe)(12)(thf)(6)(H(2)O)(6)] (1) has been synthesised and studied (chp=6-chloro-2-pyridonate). Complex 1 exhibits ferromagnetic exchange between the S=1 centres, giving an S=12 spin ground state. Detailed studies demonstrate that it is a single-molecule magnet with an energy barrier of approximately 10 K for reorientation of magnetisation. Resonant quantum tunnelling is also observed. The field between resonances allows accurate measurement of D, which is 0.067 K. Inelastic neutron scattering studies have allowed exchange parameters to be derived accurately, which was impossible from susceptibility data alone. Three exchange interactions are required: two ferromagnetic nearest neighbour interactions of approximately 11 and 2 cm(-1) and an anti-ferromagnetic next nearest neighbour interaction of -0.9 cm(-1).  相似文献   

3.
Reaction of the dinuclear complex [Mn2O2(bpy)4](ClO4)3 with H3cht (cis,cis-l,3,5-cyclohexanetriol) in MeCN produces the complex [Mn3(Hcht)2(bpy)4](ClO4)3.Et2O.2MeCN (1.Et2O.2MeCN). Dc magnetic susceptibility measurements reveal the existence of weak ferromagnetic exchange between the three Mn ions, leading to a spin ground state of S = 7, with D = -0.23 cm(-1). W-Band (94 GHz) EPR measurements on restrained powdered crystalline samples confirm the S = 7 ground state and determine the ground state zero-field splitting (ZFS) parameters of D = -0.14 cm(-1) and B4(0)= +1.5 x 10(-5) cm(-1). The apparent 4th order behaviour is due to a breakdown of the strong exchange limit approximation (J approximately d, the single-ion ZFS). Single crystal dc relaxation decay and hysteresis loop measurements reveal the molecule to have an appreciable energy barrier to magnetization relaxation, displaying low temperature sweep rate and temperature-dependent hysteresis loops. Density functional studies confirm the ferromagnetic exchange coupling between the Mn ions.  相似文献   

4.
5.
The novel octanuclear cluster [Mn8O2(OH)2(OMe)12(OAc)2(Mesalim)4] (1) presents SMM behaviour with a relatively high experimental energy barrier (eff/kB= 36.0 K) as shown by its dc and ac magnetic properties.  相似文献   

6.
Treatment of [NEt4][(pzTp)Fe(III)(CN)3] (1) with Ni(II)(OTf)2 (OTf = trifluoromethanesulfonate) and 1,5,8,12-tetraazadodecane (L) affords {[(pzTp)Fe(III)(CN)3]2[Ni(II)L]} x 1/2MeOH (2), while 2,2'-bipyridine (bipy) affords {[(pzTp)Fe(III)(CN)3]2[Ni(II)(bipy)2]} x 2 H2O (3). Magnetic measurements indicate that 2 and 3 have S = 2 ground states and that 3 exhibits slow relaxation of the magnetization above 2 K.  相似文献   

7.
Triplet diradicals have attracted tremendous attention due to their promising application in organic spintronics, organic magnets and spin filters. However, very few examples of triplet diradicals with singlet–triplet energy gaps (ΔEST) over 0.59 kcal mol−1 (298 K) have been reported to date. In this work, we first proved that the dianion of 2,7-di-tert-butyl-pyrene-4,5,9,10-tetraone (2,7-tBu2-PTO) was a triplet ground state diradical in the magnesium complex 1 with a singlet–triplet energy gap ΔEST = 0.94 kcal mol−1 (473 K). This is a rare example of stable diradicals with singlet–triplet energy gaps exceeding the thermal energy at room temperature (298 K). Moreover, the iron analog 2 containing the 2,7-tBu2-PTO diradical dianion was isolated, which was the first single-molecule magnet bridged by a diradical dianion. When 2 was doubly reduced to the dianion salt 2K2, single-molecule magnetism was switched off, highlighting the importance of diradicals in single-molecule magnetism.

We report a triplet diradical dianion in magnesium complex with ΔEST = 0.94 kcal mol−1 (473 K). Its iron analog is the first single-molecule magnet bridged by a diradical dianion, and the SMM property is switched off through two-electron reduction.  相似文献   

8.
Ferromagnetic exchange between the three Mn ions in the complex [Mn3(Hcht)2(bpy)4](ClO4)3 leads to a spin ground state of S = 7; single crystal studies reveal the temperature and sweep rate dependent hysteresis loops expected for a single-molecule magnet.  相似文献   

9.
10.
11.
A family of linear Dy3 and Tb3 clusters have been facilely synthesized from the reactions of DyCl3, the polydentate 3‐methyloxysalicylaldoxime (MeOsaloxH2) ligand with auxiliary monoanionic ligands, such as trichloroacetate, NO3?, OH?, and Cl?. Complexes 1 – 5 contain a nearly linear Ln3 core, with similar Ln???Ln distances (3.6901(4)–3.7304(3) Å for the Dy3 species, and 3.7273(3)–3.7485(5) Å for the Tb3 species) and Ln???Ln???Ln angles of 157.036(8)–159.026(15)° for the Dy3 species and 157.156(8)–160.926(15)° for the Tb3 species. All three Ln centers are bridged by the two doubly‐deprotonated [MeOsalox]2? ligands and two of the four [MeOsaloxH]? ligands through the N,O‐η2‐oximato groups and the phenoxo oxygen atoms (Dy‐O‐Dy angles=102.28(16)–106.85(13)°; Tb‐O‐Tb angles=102.00(11)–106.62(11)°). The remaining two [MeOsaloxH]? ligands each chelate an outer LnIII center through their phenoxo oxygen and oxime nitrogen atoms. Magnetic studies reveal that both Dy3 and Tb3 clusters exhibit significant ferromagnetic interactions and that the Dy3 species behave as single‐molecule magnets, expanding upon the recent reports of the pure 4f type SMMs.  相似文献   

12.
[Cu(II)(3)Tb(III)(L(Pr))(NO(3))(2)(MeOH)(H(2)O)(2)](NO(3))·3H(2)O is a rare example of a 3d-4f single-molecule magnet prepared using a macrocyclic ligand: at low T, it exhibits frequency-dependent alternating-current susceptibility, indicative of slow relaxation of the magnetization.  相似文献   

13.
14.
Mn(12) single-molecule magnets have been dispersed in water through an emulsion-assisted self-assembly method with an improved stability in water, in order to investigate the use of Mn(12) as MRI contrast agents.  相似文献   

15.
16.
Three two-dimensional (2D) network compounds based on Mn(III)/Mn(II) tetranuclear single-molecule magnets (SMMs) connected by dicyanamide (dcn-) linkers have been synthesized: [Mn4(hmp)4(Hpdm)2(dcn)2](ClO4)2 x 2 H2O x 2 MeCN (2), [Mn4(hmp)4Br2(OMe)2(dcn)2] x 0.5 H2O x 2 THF (3), [Mn4(hmp)6(dcn)2](ClO4)2 (4), where Hhmp and H2pdm are 2-hydroxymethylpyridine and pyridine-2,6-dimethanol, respectively. The [Mn4]/dcn- system appears very versatile, but enables its chemistry to be rationalized by a fine-tune of the synthetic conditions. The double cuboidal [Mn4] unit is preserved in the whole family of compounds, despite strong modifications of its Mn(II) coordination sphere. The chemical control of the coordination number of dcn- on the Mn(II) sites has been the key to obtain the following series of compounds: a discrete cluster, [Mn4(hmp)6(NO3)2(dcn)2] x 2 MeCN (1), 2D networks (2, 3, and 4), and the previously reported 3D compound, [Mn4(hmp)4(mu3-OH)2][Mn(II)(dcn)6] x 2 MeCN x THF. Direct current magnetic measurements show that both Mn2+-Mn3+ and Mn3+-Mn3+ intra-[Mn4] magnetic interactions are ferromagnetic leading to an S(T) = 9 ground state for the [Mn4] unit. Despite the very similar 2D lattices in 2-4, the two kinds of orientation of the [Mn4] unit (i.e., angle variations between the two easy axes) lead to different magnetic properties ranging from SMM behavior for 2 and 1 to a long-range canted antiferromagnetic order for 4. Compound 3 is more complicated as the magnetic measurements strongly suggest the presence of a canted antiferromagnetic order below 2.1 K, although the magnetization slow relaxation is simultaneously observed. Heat capacity measurements confirm the long-range magnetic order in 4, while in 3, the critical behavior is frozen by the slow relaxation of the anisotropic [Mn4] units.  相似文献   

17.
The reactions of [Mn12O12(O2CEt)16(H2O)4] with phenylphosphinic acid (PhHPO2H) in MeCN and MeCN/CH2Cl2 have led to isolation of [Mn22O12(O2CEt)22(O3PPh)8(H2O)8] (2) and [Mn22O12(O2CEt)20(O3PPh)8(O2PPhH)2(H2O)8]n (3), respectively, both containing PhPO3(2-) groups from in situ oxidation of PhHPO(2)(-). Complex 2 is molecular and consists of two Mn9 subunits linked by four additional Mn atoms. Complex 3 contains almost identical Mn22 units as 2, but they are linked into a one-dimensional chain structure. The Mn22 unit in both compounds is mixed-valence Mn(III)18, Mn(II)4. Solid-state, variable-temperature dc magnetic susceptibility and magnetization measurements were performed on vacuum-dried samples of 2 and 3, indicating dominant antiferromagnetic interactions. A good fit of low-temperature magnetization data for 2 could not be obtained because of problems associated with low-lying excited states, as expected for a high nuclearity complex containing Mn(II) atoms. An approximate fit using only data collected in small applied fields indicated an S = 7 or 8 ground state for 2. Solid-state ac susceptibility data established that the true ground state of 2 is S = 7 and that the connected Mn22 units of 3 are ferromagnetically coupled. Both 2 and 3 displayed weak out-of-phase ac signals indicative of slow magnetization relaxation. Single-crystal magnetization versus applied dc field scans exhibited hysteresis loops for both compounds, establishing them as new single-molecule and single-chain magnets, respectively. Complex 2 also showed steps in its hysteresis loops characteristic of quantum tunneling of magnetization, the highest nuclearity molecule to show such QTM steps. Arrhenius plots constructed from dc magnetization versus time decay plots gave effective barriers to magnetization relaxation (U(eff)) of 6 and 11 cm(-1) for 2 and 3, respectively.  相似文献   

18.
19.
Utilization of the strong electron-withdrawing ligand, hfac, leads to a novel dinuclear dysprosium single-molecule magnet featuring a pyrazine bridge with a large anisotropic barrier.  相似文献   

20.
The sulfur-bridged dimers [{Cp'(2)Ln(μ-SSiPh(3))}(2)] (Ln=Gd (1), Dy (2); Cp'=η(5)-C(5)H(4)Me) were synthesized by the transmetalation reactions between [Cp'(3)Ln] and Ph(3)SiSLi. Compound 2 is a single-molecule magnet with slow relaxation of magnetization up to 40 K and an anisotropy barrier of U(eff) =133 cm(-1). Insight into the SMM properties of 2 and closely related SMMs has been obtained using ab initio calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号