首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The sterically hindered, three-coordinate metal systems M[N(R)Ar]3 (R = tBu, iPr; Ar = 3,5-C6H3Me2) are known to bind and activate a number of fundamental diatomic molecules via a [Ar(R)N]3M-L-L-M[N(R)Ar]3 dimer intermediate. To predict which metals are most suitable for activating and cleaving small molecules such as N(2), NO, CO, and CN(-), the M-L bond energies in the L-M(NH2)3 (L = O, N, C) model complexes were calculated for a wide range of metals, oxidation states, and dn (n = 2-6) configurations. The strongest M-O, M-N, and M-C bonds occurred for the d2, d3, and d4 metals, respectively, and for these d(n) configurations, the M-C and M-O bonds were calculated to be stronger than the M-N bonds. For isoelectronic metals, the bond strengths were found to increase both down a group and to the left of a period. Both the calculated N-N bond lengths and activation barriers for N2 bond cleavage in the (H2N)3M-N-N-M(NH2)3 intermediate dimers were shown to follow the trends in the M-N bond energies. The three-coordinate complexes of Ta(II), W(III), and Nb(II) are predicted to deliver more favorable N2 cleavage reactions than the experimentally known Mo(III) system and the Re(III)Ta(III) dimer, [Ar(R)N]3Re-CO-Ta[N(R)Ar]3, is thermodynamically best suited for cleaving CO.  相似文献   

2.
The new molybdenum nitrido-thiolate complex N triple bond Mo(SAd)3 (Ad = 1-adamantyl) was prepared by a ligand exchange route involving reaction of Ti(SAd)(OiPr)3 with Chisholm's nitrido-butoxide complex N triple bond Mo(OtBu)3. In an effort to abstract the nitrido nitrogen from N triple bond Mo(SAd)3, the compound was treated with Mo(N[tBu]Ph)3, a three-coordinate molybdenum(III) complex. This resulted in formation of the unusual and thermally unstable (mu-nitrido)dimolybdenum complex (AdS)3Mo(mu-N)Mo(N[tBu]Ph)3, which was isolated and characterized. An X-ray study revealed (AdS)3Mo(mu-N)Mo(N[tBu]Ph)3 to possess an unsymmetrical Mo-(mu-N)-Mo linkage, the Mo-thiolate fragment exhibiting a substantially longer bond to the bridging nitrogen atom. The structure of (AdS)3Mo-(mu-N)Mo(N[tBu]Ph)3 is noteworthy, displaying trigonal monopyramidal coordination at the (mu-N)-Mo-thiolate Mo center. Since N triple bond Mo(N[tBu]Ph)3 is a good leaving group, (AdS)3Mo(mu-N)Mo(N[tBu]Ph)3 should be a source of the reactive Mo(SAd)3 fragment. In all the studied reactions of the (mu-nitrido)dimolybdenum complex one of the observed products was N triple bond Mo(N[tBu]Ph)3. Two products containing the Mo(SAd)3 fragment were observed: (AdS)3Mo triple bond Mo(SAd)3 and [(ON)Mo(mu-SAd)(SAd)2]2. Upon treatment with pyridine, the tris(thio-1-adamantyl)-(nitrosyl)molybdenum dimer forms the pyridine adduct (AdS)3Mo(NO)(py), which is a monomer.  相似文献   

3.
Reactions between sodium amides Na[N(SiMe3)R1] [R1 = SiMe3 (1), SiMe2Ph (2) or But (3)] and cyanoalkanes RCN (R = Ad or But) were investigated. In each case the nitrile adduct [Na{mu-N(SiMe3)2}(NCR)]2 [R = Ad (1a) or But (1b)], trans-[Na{mu-N(SiMe3)(SiMe2Ph)}(NCR)]2 [R = Ad (2a) or But (2b)], [(Na{mu-N(SiMe3)But})3(NCAd)3] (3a) or [(Na{mu-N(SiMe3)But})3(NCBut)n] [n = 3 (3b) or 2 (3c)] was isolated. The reaction of complexes 3a or 3b with benzene afforded the ketimido complex [Na{mu-N=C(Ad)(Ph)}]6.2C6H6 (4a) or [Na{mu-N=C(But)(Ph)}]6 (4b); the former was also prepared in more conventional fashion from NaPh and AdCN. The synthesis and structure of an analogue of complex 1a, [Li{mu-N(SiMe3)2}(NCAd)]2 (5a), is also presented. The compounds 1a, 1b, 2a, 2b, 3, 3b, 4a, 4b and 5a were characterised by X-ray diffraction.  相似文献   

4.
The reaction profile of N2 with Fryzuk’s [Nb(P2N2)] (P2N2=PhP(CH2SiMe2NSiMe2CH2)2PPh) complex is explored by density functional calculations on the model [Nb(PH3)2(NH2)2] system. The effects of ligand constraints, coordination number, metal and ligand donor atom on the reaction energetics are examined and compared to the analogous reactions of N2 with the three‐coordinate Laplaza‐Cummins [Mo{N(R)Ar}3] and four‐coordinate Schrock [Mo(N3N)] (N3N=[(RNCH2CH2)3N]3?) systems. When the model system is constrained to reflect the geometry of the P2N2 macrocycle, the N? N bond cleavage step, via a N2‐bridged dimer intermediate, is calculated to be endothermic by 345 kJ mol?1. In comparison, formation of the single‐N‐bridged species is calculated to be exothermic by 119 kJ mol?1, and consequently is the thermodynamically favoured product, in agreement with experiment. The orientation of the amide and phosphine ligands has a significant effect on the overall reaction enthalpy and also the N? N bond cleavage step. When the ligand constraints are relaxed, the overall reaction enthalpy increases by 240 kJ mol?1, but the N2 cleavage step remains endothermic by 35 kJ mol?1. Changing the phosphine ligands to amine donors has a dramatic effect, increasing the overall reaction exothermicity by 190 kJ mol?1 and that of the N? N bond cleavage step by 85 kJ mol?1, making it a favourable process. Replacing NbII with MoIII has the opposite effect, resulting in a reduction in the overall reaction exothermicity by over 160 kJ mol?1. The reaction profile for the model [Nb(P2N2)] system is compared to those calculated for the model Laplaza and Cummins [Mo{N(R)Ar}3] and Schrock [Mo(N3N)] systems. For both [Mo(N3N)] and [Nb(P2N2)], the intermediate dimer is calculated to lie lower in energy than the products, although the final N? N cleavage step is much less endothermic for [Mo(N3N)]. In contrast, every step of the reaction is favourable and the overall exothermicity is greatest for [Mo{N(R)Ar}3], and therefore this system is predicted to be most suitable for dinitrogen cleavage.  相似文献   

5.
Enthalpies of oxidative addition of PhE-EPh (E = S, Se, Te) to the M(0) complexes M(PiPr3)2(CO)3 (M = Mo, W) to form stable complexes M(*EPh)(PiPr3)2(CO)3 are reported and compared to analogous data for addition to the Mo(III) complexes Mo(N[tBu]Ar)3 (Ar = 3,5-C6H3Me2) to form diamagnetic Mo(IV) phenyl chalcogenide complexes Mo(N[tBu]Ar)3(EPh). Reactions are increasingly exothermic based on metal complex, Mo(PiPr3)2(CO)3 < W(PiPr3)2(CO)3 < Mo(N[tBu]Ar)3, and in terms of chalcogenide, PhTe-TePh < PhSe-SePh < PhS-SPh. These data are used to calculate LnM-EPh bond strengths, which are used to estimate the energetics of production of a free *EPh radical when a dichalcogenide interacts with a specific metal complex. To test these data, reactions of Mo(N[tBu]Ar)3 and Mo(PiPr3)2(CO)3 with PhSe-SePh were studied by stopped-flow kinetics. First- and second-order dependence on metal ion concentration was determined for these two complexes, respectively, in keeping with predictions based on thermochemical data. ESR data are reported for the full set of bound chalcogenyl radical complexes (PhE*)M(PiPr3)2(CO)3; g values increase on going from S to Se, to Te, and from Mo to W. Calculations of electron densities of the SOMO show increasing electron density on the chalcogen atom on going from S to Se to Te. The crystal structure of W(*TePh)(PiPr3)2(CO)3 is reported.  相似文献   

6.
Three-coordinate Mo[N((t)Bu)Ar]3 binds cyanide to form the intermediate [Ar((t)Bu)N]3Mo-CN-Mo[N((t)Bu)Ar]3 but, unlike its N2 analogue which spontaneously cleaves dinitrogen, the C-N bond remains intact. DFT calculations on the model [NH2]3Mo/CN- system show that while the overall reaction is significantly exothermic, the final cleavage step is endothermic by at least 90 kJ mol(-1), accounting for why C-N bond cleavage is not observed experimentally. The situation is improved for the [H2N]3W/CN- system where the intermediate and products are closer in energy but not enough for CN- cleavage to be facile at room temperature. Additional calculations were undertaken on the mixed-metal [H2N]3Re+/CN- /W[NH2]3 and [H2N]3Re+/CN-/Ta[NH2]3 systems in which the metals ions were chosen to maximise the stability of the products on the basis of an earlier bond energy study. Although the reaction energetics for the [H2N]3Re+/CN /W[NH2]3 system are more favourable than those for the [H2N]3W/CN- system, the final C-N cleavage step is still endothermic by 32 kJ mol(-1) when symmetry constraints are relaxed. The resistance of these systems to C-N cleavage was examined by a bond decomposition analysis of [H2N]M-L1[triple bond]L2-M[NH2]3 intermediates for L1[triple bond]L2 = N2, CO and CN which showed that backbonding from the metal into the L1[triple bond]L2 pi* orbitals is significantly less for CN than for N2 or CO due to the negative charge on CN- which results in a large energy gap between the metal d(pi), and the pi* orbitals of CN-. This, combined with the very strong M-CN- interaction which stabilises the CN intermediate, makes C-N bond cleavage in these systems unfavourable even though the C[triple bond]N triple bond is not as strong as the bond in N2 or CO.  相似文献   

7.
Density functional calculations have been employed to rationalize why the heteronuclear N(2)-bridged Mo(III)Nb(III) dimer, [Ar((t)Bu)N](3)Mo(mu-N(2))Nb[N((i)Pr)Ar](3)(Ar = 3,5-C(6)H(3)Me(2)), does not undergo cleavage of the dinitrogen bridge in contrast to the analogous Mo(III)Mo(III) complex which, although having a less activated N-N bond, undergoes spontaneous dinitrogen cleavage at room temperature. The calculations reveal that although the overall reaction is exothermic for both systems, the actual cleavage step is endothermic by 144 kJ mol(-1) for the Mo(III)Nb(III) complex whereas the Mo(III)Mo(III) system is exothermic by 94 kJ mol(-1). The reluctance of the Mo(III)Nb(III) system to undergo N(2) cleavage is attributed to its d(3)d(2) metal configuration which is one electron short of the d(3)d(3) configuration necessary to reductively cleave the dinitrogen bridge. This is confirmed by additional calculations on the related d(3)d(3) Mo(III)Nb(II) and Nb(II)Nb(II) systems for which the cleavage step is calculated to be substantially exothermic, accounting for why in the presence of the reductant KC(8), the [Ar((t)Bu)N](3)Mo(mu-N(2))Nb[N((i)Pr)Ar](3) complex was observed to undergo spontaneous cleavage of the dinitrogen bridge. On the basis of these results, it can be concluded that the level of activation of the N-N bond does not necessarily correlate with the ease of cleavage of the dinitrogen bridge.  相似文献   

8.
Synthetic studies are reported that show that the reaction of either H2SnR2 (R = Ph, n-Bu) or HMo(CO)3(Cp) (1-H, Cp = eta(5)-C5H5) with Mo(N[t-Bu]Ar)3 (2, Ar = 3,5-C6H3Me2) produce HMo(N[t-Bu]Ar)3 (2-H). The benzonitrile adduct (PhCN)Mo(N[t-Bu]Ar)3 (2-NCPh) reacts rapidly with H2SnR2 or 1-H to produce the ketimide complex (Ph(H)C=N)Mo(N[t-Bu]Ar)3 (2-NC(H)Ph). The X-ray crystal structures of both 2-H and 2-NC(H)Ph are reported. The enthalpy of reaction of 1-H and 2 in toluene solution has been measured by solution calorimetry (DeltaH = -13.1 +/- 0.7 kcal mol(-1)) and used to estimate the Mo-H bond dissociation enthalpy (BDE) in 2-H as 62 kcal mol(-1). The enthalpy of reaction of 1-H and 2-NCPh in toluene solution was determined calorimetrically as DeltaH = -35.1 +/- 2.1 kcal mol(-1). This value combined with the enthalpy of hydrogenation of [Mo(CO)3(Cp)]2 (1(2)) gives an estimated value of 90 kcal mol(-1) for the BDE of the ketimide C-H of 2-NC(H)Ph. These data led to the prediction that formation of 2-NC(H)Ph via nitrile insertion into 2-H would be exothermic by approximately 36 kcal mol(-1), and this reaction was observed experimentally. Stopped flow kinetic studies of the rapid reaction of 1-H with 2-NCPh yielded DeltaH(double dagger) = 11.9 +/- 0.4 kcal mol(-1), DeltaS(double dagger) = -2.7 +/- 1.2 cal K(-1) mol(-1). Corresponding studies with DMo(CO)3(Cp) (1-D) showed a normal kinetic isotope effect with kH/kD approximately 1.6, DeltaH(double dagger) = 13.1 +/- 0.4 kcal mol(-1) and DeltaS(double dagger) = 1.1 +/- 1.6 cal K(-1) mol(-1). Spectroscopic studies of the much slower reaction of 1-H and 2 yielding 2-H and 1/2 1(2) showed generation of variable amounts of a complex proposed to be (Ar[t-Bu]N)3Mo-Mo(CO)3(Cp) (1-2). Complex 1-2 can also be formed in small equilibrium amounts by direct reaction of excess 2 and 1(2). The presence of 1-2 complicates the kinetic picture; however, in the presence of excess 2, the second-order rate constant for H atom transfer from 1-H has been measured: 0.09 +/- 0.01 M(-1) s(-1) at 1.3 degrees C and 0.26 +/- 0.04 M(-1) s(-1) at 17 degrees C. Study of the rate of reaction of 1-D yielded kH/kD = 1.00 +/- 0.05 consistent with an early transition state in which formation of the adduct (Ar[t-Bu]N)3Mo...HMo(CO)3(Cp) is rate limiting.  相似文献   

9.
Mixed amidinato amido complexes [Me3SiNC(tBu)NSiMe3]M[N(SiMe3)2] (M = Sn 2, Ge 3) were prepared by the reaction of [Me3SiNC(tBu)NSiMe3]Li (1a) with SnCl2 and GeCl2(dioxane) in ether. The N(SiMe3)2 ligand in these compounds is derived from the rearrangement of the [Me3SiNC(tBu)NSiMe3]- anion with extrusion of tBuCN. The susceptibility of [Me3SiNC(tBu)NSiMe3]- to rearrangement appears to be dependent on reaction solvent and on the coordinated metal center. Single-crystal X-ray diffraction studies of 2 and 3 are presented. Replacement of Me for tBu in the ligand allowed [Me3SiNC(Me)NSiMe3]2SnII (4) to be isolated, and an X-ray structure of this compound is reported. The isolation of 4 indicates that steric factors also play a role in the stability of [Me3SiNC(tBu)NSiMe3]-. Compounds 2 and 3 are outstanding catalysts for the cyclotrimerization of phenyl isocyanates to perhydro-1,3,5-triazine-2,4,6-triones (isocyanurates) at room temperature. In contrast, complex 4 catalytically reacts with phenyl isocyanate to produce isocyanate dimer and trimer in a 52:35 ratio.  相似文献   

10.
The symmetric digold(II)dichloride bis(ylide) complex [Au2Cl2(mu-{CH2}2PPh2)2] reacts with acetylides to form the asymmetric heterovalent gold(I)/gold(III) complexes [AuI(mu-{CH2}2PPh2)2AuIII(CCR)2] [R = Ph, tBu, and SiMe3], the phenyl analogue of which was characterized by X-ray crystallography. These compounds represent the first examples of gold(III) complexes containing two acetylide ligands. [AuI(mu-{CH2}2PPh2)2AuIII(CCPh)2] undergoes a reversible comproportionation reaction upon treatment with [Ag(ClO4)tht] to give the symmetric digold(II) cationic complex [Au2(tht)2(mu-{CH2}2PPh2)2](ClO4)2. If this complex is treated with phenylacetylene in the presence of base, the heterovalent gold(I)/gold(III) complex is re-formed. This reversible interconversion between binuclear gold(I)/gold(III) and digold(II) bis(ylide) complexes is unprecedented.  相似文献   

11.
Zhou M  Song Y  Gong T  Tong H  Guo J  Weng L  Liu D 《Inorganic chemistry》2008,47(15):6692-6700
Addition reaction of ArN(SiMe 3)M (Ar = Ph or 2,6 - (i) Pr 2-C 6H 3 (Dipp); M = Li or Na) to 2 equivalents of alpha-hydrogen-free nitrile RCN (R = dimethylamido) gave the dimeric [M{N(Ar)C(NMe 2)NC(NMe 2)N(SiMe 3)}] 2 ( 1a, Ar = Ph, M = Li; 1b, Ar = Ph, M = Na; 1c, Ar = Dipp, M = Li). 1d was obtained by hydrolysis of 1c at ambient temperature. Treatment of a double ratio of 1a or 1b with anhydrous MCl 2 (M = Mn, Fe, Co) yielded the 1,3,5-triazapentadienato complexes [M{N(Ph)C(NMe 2)NC(NMe 2)N(SiMe 3)} 2] (M = Mn, 2; Fe, 3; Co, 4) and with NiCl 2.6H 2O gave [M{N(Ph)C(NMe 2)NC(NMe 2)N(H)} 2] (M = Ni, 5). Treatment of an equiv of 1c with anhydrous CuCl in situ and in air led to complexes [{N(Dipp)C(NMe 2)NC(NMe 2)N(SiMe 3)}CuPPh 3] 6 and [Cu{N(Dipp)C(NMe 2)NC(NMe 2)N(H)} 2] 7, respectively. 1c, 1d, and 2- 7 were characterized by X-ray crystallography and microanalysis. 1c, 1d, 5, and 6 were well characterized by (1)H, (13)C NMR, 1c by (7)Li, and 6 by (31)P NMR as well. The structural features of these complexes were described in detail.  相似文献   

12.
A trinuclear Yb beta-diketiminato cluster [(YbL)3(THF)] (1) (L = {N(SiMe3)C(Ph)}2CH), containing L-1 and L-3 as well as Yb(II) and Yb(III) centers, was obtained by treatment of [YbL2] with Yb-naphthalene and was characterized by X-ray crystallography. The electron distribution in 1 and the Yb(II)/L-2 complex [Yb{(mu-L)Li(THF)}2] (2) was analyzed by DFT and ONIOM (QM/MM) calculations.  相似文献   

13.
The reaction of ketene OCCPh(2) with the four-coordinate titanium(IV) imide (L(1))Ti[double bond]NAr(OTf) (L(1)(-) = [Ar]NC(CH(3))CHC(CH(3))N[Ar], Ar = 2,6-[CH(CH(3))(2)](2)C(6)H(3)) affords the tripodal dimine-alkoxo complex (L(2))Ti[double bond]NAr(OTf) (L(2)(-) = [Ar]NC(CH(3))CHC(O)[double bond]CPh(2)C(CH(3))N[Ar]). Complex (L(2))Ti[double bond]NAr(OTf) forms from electrophilic attack of the beta-carbon of the ketene on the gamma-carbon of the Nacnac(-) NCC(gamma)CN ring. On the contrary, nucleophiles such as LiR (R(-) = Me, CH(2)(t)Bu, and CH(2)SiMe(3)) deprotonate cleanly in OEt(2) the methyl group of the beta-carbon on the former Nacnac(-) backbone to yield the etherate complex (L(3))Ti[double bond]NAr(OEt(2)), a complex that is now supported by a chelate bis-anilido ligand (L(3)(2)(-) = [Ar]NC(CH(3))CHC(CH(2))N[Ar]). In the absence of electrophiles or nucleophiles, the robust (L(1))Ti[double bond]NAr(OTf) template was found to form simple adducts with Lewis bases such as CN(t)Bu or NCCH(2)(2,4,6-Me(3)C(6)H(2)). Complexes (L(2))Ti[double bond]NAr(OTf), (L(3))Ti[double bond]NAr(OEt(2)), and the adducts (L(1))Ti[double bond]NAr(OTf)(XY) [XY = CN(t)Bu and NCCH(2)(2,4,6-Me(3)C(6)H(2))] were structurally characterized by single-crystal X-ray diffraction studies.  相似文献   

14.
The crystalline dimeric 1-azaallyllithium complex [Li{mu,eta(3-N(SiMe3)C(Ad)C(H)SiMe3}]2 (1) was prepared from equivalent portions of Li[CH(SiMe3)2] and 1-cyanoadamantane (AdCN). Complex was used as precursor to each of the crystalline complexes 2-8 which were obtained in good yield. By 1-azaallyl ligand transfer, 1 afforded (i) [Al{eta3-N(SiMe3)C(Ad)C(H)SiMe3}{kappa1-N(SiMe3)C(Ad)=C(H)SiMe3-E}Me] (5) with [AlCl2Me](2), (ii) [Sn{eta3-N(SiMe3)C(Ad)C(H)SiMe3}2] (7) with Sn[N(SiMe3)2]2, and (iii) [Li(N{C(Ad)=C(H)SiMe3-E}{Si(NN)SiMe3})(thf)2] (8) with the silylene Si[(NCH(2)Bu(t))2C6H(4)-1,2] [= Si(NN)]. By insertion into the C[triple bond, length as m-dash]N bond of the appropriate cyanoarene RCN, gave the beta-diketiminate [Li{mu-N(SiMe3)C(Ad)C(H)C(R)NSiMe3}]2 [R = Ph (2), C(6)H(4)Me-4 (3)], and yielded [Al{kappa2-N(SiMe3)C(Ad)C(H)C(Ph)NSiMe3}{kappa1-N(SiMe3)C(Ad)=C(H)SiMe3-E}Me] (6). The beta-diketiminate [Al{kappa2-N(SiMe3)C(Ad)C(H)C(Ph)NSiMe3}Me2] (4) was prepared from 2 and [AlClMe2]2. The X-ray structures of 1 and 3-8 are presented. Multinuclear NMR spectra in C6D6 or C6D5CD3 have been recorded for each of 1-8; such data on 8 revealed that in solution two minor isomers were also present.  相似文献   

15.
The key intermediate in dinitrogen cleavage by Mo(N[t-Bu]Ar)3, 1 (Ar = 3,5-C6H3Me2), has been characterized by a pair of single crystal X-ray structures. For the first time, the X-ray crystal structure of (mu-N2)[Mo(N[t-Bu]Ar)3]2, 2, and the product of homolytic fragmentation of the NN bond, NMo(N[t-Bu]Ar)3, are reported. The structural features of 2 are compared with previously reported EXAFS data. Moreover, contrasts are drawn between theoretical predictions concerning the structural and magnetic properties of 2 and those reported herein. In particular, it is shown that 2 exists as a triplet (S = 1) at 20 degrees C. Further insight into the bonding across the MoNNMo core of the molecule is obtained by the synthesis and structural characterization of the one- and two-electron oxidized congeners, (mu-N2)[Mo(N[t-Bu]Ar)3]2[B(Ar(F))4], 2[B(Ar(F))4] (Ar(F) = 3,5-C6H3(CF3)2) and (mu-N2)[Mo(N[t-Bu]Ar)3]2[B(Ar(F))4]2, 2[B(Ar(F))4]2, respectively. Bonding in these three molecules is discussed in view of X-ray crystallography, Raman spectroscopy, electronic absorption spectroscopy, and density functional theory. Combining X-ray crystallography data with Raman spectroscopy studies allows the NN bond polarization energy and NN internuclear distance to be correlated in three states of charge across the MoNNMo core. For 2[B(Ar(F))4], bonding is symmetric about the mu-N2 ligand and the NN polarization is Raman active; therefore, 2[B(Ar(F))4] meets the criteria of a Robin-Day class III mixed-valent compound. The redox couples that interrelate 2, 2(+), and 2(2+) are studied by cyclic voltammetry and spectroelectrochemistry. Insights into the electronic structure of 2 led to the discovery of a photochemical reaction that forms NMo(N[t-Bu]Ar)3 and Mo(N[t-Bu]Ar)3 through competing NN bond cleavage and N2 extrusion reaction pathways. The primary quantum yield was determined to be Phi(p) = 0.05, and transient absorption experiments show that the photochemical reaction is complete in less than 10 ns.  相似文献   

16.
Oxidative insertion of the In(I) 'carbene analogues', [In{N(Dipp)C(Me))2CH] (Ar = Dipp = 2,6-iPr2C6H3; Ar = Mes = 2,4,6-Me3C6H2) into the Fe-I bond of [CpFe(CO)2I] occurred cleanly and under mild conditions to yield the In(III) compounds [CH((CH3)2CN-2,6-iPr2C6H3)2In(I)FeCp(CO)2] and [CH( (CH3)2CN-2,4,6-Me3C6H3)2In(I)FeCp(CO)2], which have been fully characterised in solution and the solid state. Attempts to abstract the iodide anion from [CH( (CH3)2CN-2,6-iPr2C6H3)2In(I)FeCp(CO)2] to form cationic species containing a coordinated indium diyl were unsuccessful and resulted in a complex mixture of products from which two ionic species were isolated. Neither cation was found to contain indium by X-ray crystallographic analysis. These observations were indicative of ill-defined decomposition pathways as have been noted by previous workers. A further attempt to form a cationic iron species containing a coordinated [In(N(Dipp)C(Me) )2CH] fragment resulted in oxidation of the iron centre from Fe(II) to Fe(III), with deposition of indium metal, and the isolation of a cationic Fe(III) beta-diketiminate complex.  相似文献   

17.
The reaction of the arylated Fischer carbene complexes [(CO)5M=C(OEt)Ar] (Ar=Ph; M = Cr, W; 2-MeC6H4; 2-MeOC6H; M = W) with the phosphaalkenes RP=C(NMe2), (R=tBu, SiMe3) afforded the novel phosphaalkene complexes [[RP=C(OEt)Ar]M(CO)5] in addition to the compounds [(RP=C(NMe2)2]M(CO)5]. Only in the case of the R = SiMe3 (E/Z) mixtures of the metathesis products were obtained. The bis(dimethylamino)methylene unit of the phosphaalkene precursor was incorporated in olefins of the type (Me2N)2C=C(OEt)(Ar). Treatment of [(CO)5W=C(OEt)(2-MeOC6H4)] with HP=C(NMe2)2 gave rise to the formation of an E/Z mixture of [[(Me2N)2CH-P=C(OEt)(2-MeOC6H4)]W(CO)5] the organophosphorus ligand of which formally results from a combination of the carbene ligand and the phosphanediyl [P-CH(NMe2)2]. The reactions reported here strongly depend on an inverse distribution of alpha-electron density in the phosphaalkene precursors (Pdelta Cdelta+), which renders these molecules powerfu] nucleophiles.  相似文献   

18.
The addition of thiols to ((t)BuO)(3)Mo[triple bond]N in toluene leads to the formation of (RS)(3)Mo[triple bond]N compounds as yellow, air-sensitive compounds, where R = (i)Pr and (t)Bu. The single-crystal structure of ((t)BuS)(3)Mo[triple bond]N reveals a weakly associated dimeric structure where two ((t)BuS)(3)Mo[triple bond]N units (Mo-N = 1.61 A, Mo-S = 2.31 A (av)) are linked via thiolate sulfur bridges with long 3.03 A (av) Mo-S interactions. Density functional theory calculations employing Gaussian 98 B3LYP (LANL2DZ for Mo and 6-31G* for N, O, S, and H) have been carried out for model compounds (HE)(3)Mo[triple bond]N and (HE)(3)MoNO, where E = O and S. A comparison of the structure and bonding within the related series ((t)BuE)(3)Mo[triple bond]N and ((t)BuE)(3)MoNO is made for E = O and S. In the thiolate compounds, the highest energy orbitals are sulfur lone-pair combinations. In the alkoxides, the HOMO is the N 2p lone-pair which has M-N sigma and M-O pi* character for the nitride. As a result of greater O p pi to Mo pi interactions, the M-N pi orbitals of the Mo-N triple bond are destabilized with respect to their thiolate counterpart. For the nitrosyl compounds, the greater O p pi to Mo d pi interaction favors greater back-bonding to the nitrosyl pi* orbitals for the alkoxides relative to the thiolates. The results of the calculations are correlated with the observed structural features and spectroscopic properties of the related alkoxide and thiolate compounds.  相似文献   

19.
The transformation of acid chlorides (RC(O)Cl) to organic nitriles (RC[triple bond]N) by the terminal niobium nitride anion [N[triple bond]Nb(N[Np]Ar)3]- ([1a-N]-, where Np = neopentyl and Ar = 3,5-Me2C6H3) via isovalent N for O(Cl) metathetical exchange is presented. Nitrido anion [1a-N]- is obtained in a heterodinuclear N2 scission reaction employing the molybdenum trisamide system, Mo(N[R]Ar)3 (R = t-Bu, 2a; R = Np, 2b), as a reaction partner. Reductive scission of the heterodinuclear bridging N2 complexes, (Ar[R]N)3Mo-(mu-N2)Nb(N[Np]Ar)3 (R = t-Bu, 3b; R = Np, 3c) with sodium amalgam provides 1 equiv each of the salt Na[1a-N] and neutral N[triple bond]Mo(N[R]Ar)3 (R = t-Bu, 2a-N; R = Np, 2b-N). Separation of 2-N from Na[1a-N] is readily achieved. Treatment of salt Na[1a-N] with acid chloride substrates in tetrahydrofuran (THF) furnishes the corresponding organic nitriles concomitant with the formation of NaCl and the oxo niobium complex O[triple bond]Nb(N[Np]Ar)3 (1a-O). Utilization of 15N-labeled 15N2 gas in this chemistry affords a series of 15N-labeled organic nitriles establishing the utility of anion [1a-N]- as a reagent for the 15N-labeling of organic molecules. Synthetic and computational studies on model niobium systems provide evidence for the intermediacy of both a linear acylimido and niobacyclobutene species along the pathway to organic nitrile formation. High-yield recycling of oxo 1a-O to a niobium triflate complex appropriate for heterodinuclear N2 scission has been developed. Specifically, addition of triflic anhydride (Tf2O, where Tf = SO2CF3) to an Et2O solution of 1a-O provides the bistriflate complex, Nb(OTf)2(N[Np]Ar)3 (1a-(OTf)2), in near quantitative yield. One-electron reduction of 1a-(OTf)2 with either cobaltocene (Cp2Co) or Mg(THF)3(anthracene) provided the monotriflato complex, Nb(OTf)(N[Np]Ar)3 (1a-(OTf)), which efficiently regenerates complexes 3b and 3c when treated with the molybdenum dinitrogen anions [N2Mo(N[t-Bu]Ar)3]- ([2a-N2]-) or [N2Mo(N[Np]Ar)3]- ([2b-N2]-), respectively.  相似文献   

20.
Treatment of (DME)Cl2Mo(=NR)2 (R=tBu, (1-tBu), tAmyl (1-tAmyl)) with 2 equiv of tBu3SiOH (siloxH) and 1 equiv of HCl produced (silox)2Cl2Mo=NR (R=tBu, (3-tBu), tAmyl (3-tAmyl)); subsequent reduction by Na/Hg afforded the Mo(V) chloride, (silox)2ClMo=NtBu (4-tBu), and the Mo(IV) mercury derivatives, [(silox)2Mo=NR]2Hg (R=tBu ((5-tBu)2Hg), tAmyl ((5-tAmyl)2Hg)). Reductions of 3-tBu and 3-tAmyl in the presence of L (L=PMe3, pyridine, 4-picoline) led to the isolation of adducts (silox)2(Me3P)Mo=NR (R=tBu (6-tBu), tAmyl (6-tAmyl)) and (silox)2L2Mo=NtBu (L=py (7-py), 4-pic (7-4-pic)). Single-crystal X-ray structural investigations of pseudo-tetrahedral 4-tBu, Hg-capped, pseudo-trigonal planar (5-tBu)2Hg, pseudo-tetrahedral 6-tBu, and trigonal bipyramidal 7-4-pic reveal that all possess a closed O-Mo-O angle when compared to the N=Mo-O angles. A molecular orbital rationale and supporting calculations suggest that this is a manifestation of the greater pi-donating ability of the imido relative to that of the siloxides. While the D(Mo-Hg) of [(HO)2Mo=NH]2Hg ((5')2Hg) was calculated to be 22.4 kcal/mol, (5-R)2Hg (R=tBu, tAmyl) are remarkably stable; (5-tBu)2Hg degraded in a first-order fashion with DeltaG=31.9(1) kcal/mol. In the presence of strong (L=PMe, pyridine, S8) or weak (L=2-butyne, ethylene, N2O, 1,4,7,10-tetrathiacyclododecane, 1,4,7,10,13,16-hexathiacyclooctadecane) nucleophiles, an enhanced rate of Mo-Hg bond cleavage was noted, with some of the former group generating adducts in <5 min; the products were 6-tBu, 7-py, (silox)2(S)Mo=NtBu (10-tBu), (silox)2Mo=NtBu(C2Me2) (8-tBu), (silox)2(C2H4)Mo=NtBu (11-tBu), (silox)2(O)Mo=NtBu (9-tBu), and a mixture of 10-tBu and 11-tBu, respectively. Some of these were independently prepared via substitution of 6-tBu. According to calculations and a molecular orbital rationale, dissociation of the Mo-Hg bond in (5-R)2Hg (R=tBu, tAmyl) is orbitally forbidden, and the addition of a nucleophile to the terminus of the Mo-Hg-Mo linkage mitigates the symmetry requirements. The mechanism of thermal degradation was studied with mixed success. NMR spectroscopy revealed imido exchange between (5-tBu)2Hg and (5-tAmyl)2Hg during an initial induction period and a subsequent rapid exchange period that implicated free 5-R (R=tBu, tAmyl). Further crossover studies revealed siloxide exchange as an additional complication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号