首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents experimental data concerning the flow and noise generated by a sharp-edged flat plate at low-to-moderate Reynolds number (Reynolds number based on chord of 2.0 × 10(5) to 5.0 × 10(5)). The data are used to evaluate a variety of semi-empirical trailing edge noise prediction methods. All were found to under-predict noise at lower frequencies. Examination of the velocity spectra in the near wake reveals that there are energetic velocity fluctuations at low frequency about the trailing edge. A semi-empirical model of the surface pressure spectrum is derived for predicting the trailing edge noise at low-to-moderate Reynolds number.  相似文献   

2.
The spectral levels of the quadrupole noise generated by a boundary layer flow over a smooth surface are calculated. Explicit dependences of the noise levels on the Reynolds number are obtained for the low-frequency and high-frequency ranges. It is shown that the logarithmic zone of the velocity profile is responsible for the region of the quadrupole noise spectrum with a hyperbolic dependence on frequency. A method of calculating the dipole noise of a boundary layer flow over a rough surface is developed. The method is based on the use of the combined probability density for the turbulent velocity fluctuations and the random dimensions of protuberances of the rough surface. The two constants involved in this theory are determined from a special experiment. It is shown that the surface roughness noticeably increases the radiation levels of a boundary layer flow in a certain frequency range.  相似文献   

3.
The effect of hydrodynamic fluctuations on noise in molecular electronic transducers is studied. It is shown that turbulent pulsation also makes a considerable contribution to the self-noise of molecular elec-tronic transformers, along with laminar flow fluctuations. A method for qualitative and quantitative calculation of the noise induced by turbulent pulsation that arises when a liquid flows along the electrode surface is proposed. A quantitative relationship that relates the rms pressure pulsation to the liquid head and an expression for the total spectral density of the hydrodynamic noise in molecular electronic transducers are obtained.  相似文献   

4.
Results on a hyperboloid-flare model tested in a new hypersonic wind tunnel with adiabatic compression AT-303 based at ITAM SB RAS at M = 10 and 15 and in a wide range of Reynolds numbers are presented. Pressure and heat-flux distributions along the model are compared with data obtained previously in various European hypersonic wind tunnels (Longshot — Belgium, HEG — Germany) and with results of numerical computations. Pressure and heat-flux coefficients measured in the attached flow region are demonstrated to be in good qualitative agreement. Reasons for the differences in results measured in regions of flow separation and reattachment are discussed. Significant viscous effects on characteristics of the flow around the model are demonstrated; a particularly strong effect is exerted on the heat-flux distribution. This fact confirms that it is important to model real Reynolds numbers in wind-tunnel testing of aerospace plane models.  相似文献   

5.
This paper presents a model for aircraft slat noise prediction, based on the theory of aerodynamic sound generation and the first principles of source flow physics. Starting from the theory of acoustic analogy, the noise from the high Reynolds number and low Mach number flows in the slat cove region is formulated as a general solution by the method of dimensional analysis, far-field asymptotic expansion and statistical modeling. The solution relates the far-field noise spectrum to the surface pressure statistics, the characteristic length and time scales in the surface pressure statistics and Green's function that accounts for the sound-flow coupling and propagation effects. The general solution is then used to extract scaling laws and correlation models for the individual functional dependences between the far-field noise and various parameters, including the slat noise spectral shape, its Mach number dependence and its far-field directivity. The simple scaling laws and correlation models are validated by test data and serve as building blocks to construct a slat noise prediction model.  相似文献   

6.
Leading-edge vortices on a simple delta wing were visualized by using pressure-sensitive paint (PSP). PSP is an optical pressure measurement technique based on oxygen quenching of luminescent molecules. In the present study, we used PSP composed of platinum octaethylporphyrine (PtOEP) and fluoropolymer (poly-IBM-co-TFEM [Poly (isobutylmethacrtlate-co-trifluoroethylate)]). This new paint has higher sensitivity to pressure and lower sensitivity to temperature than previous ones, reducing an error due to temperature variation during a wind tunnel test. A thin coating of PSP was applied to a delta wing model with 70-degree leading-edge sweep. The coating was excited by Xenon light and emission from the coating was detected by a high-resolution CCD camera. Tests were done at subsonic speeds in the 0.2-m Supersonic Wind Tunnel at the National Aerospace Laboratory in Japan. Complicated flow structures on the delta wing including primary and secondary vortices were clearly visualized using pressure-sensitive paint. An a priori calibration technique was used to convert measured luminescent intensity into pressure. The obtained pressure distributions were in good agreement with pressure tap data. Pressure maps were obtained for various Mach numbers, Reynolds numbers and angles of attack. It was found that an increase in Mach number delayed vortex breakdown while Reynolds number had little effect on the vortex formation.  相似文献   

7.
This paper investigates the wind noise pressure spectra measured by aerodynamically designed devices in turbulent flow. Such measurement probes are often used in acoustic measurements in wind tunnels to reduce the pressure fluctuations generated by the interaction of the devices with the incident flow. When placed in an outdoor turbulent environment however, their performance declines noticeably. It is hypothesized that these devices are measuring the stagnation pressures generated by the cross flow components of the turbulence. Predictions for the cross flow contribution to the stagnation pressure spectra based on measured velocity spectra are developed, and are then compared to the measured pressure spectra in four different probe type devices in windy conditions outdoors. The predictions agree well with the measurements and show that the cross flow contamination coefficient is on the order of 0.5 in outdoor turbulent flows in contrast to the published value of 0.15 for measurements in a turbulent jet indoors.  相似文献   

8.
Direct measurements of the wavenumber-frequency spectrum of wall pressure fluctuations beneath a turbulent plane channel flow have been performed in an anechoic wind tunnel. A rotative array has been designed that allows the measurement of a complete map, 63×63 measuring points, of cross-power spectral densities over a large area. An original post-processing has been developed to separate the acoustic and the aerodynamic exciting loadings by transforming space-frequency data into wavenumber-frequency spectra. The acoustic part has also been estimated from a simple Corcos-like model including the contribution of a diffuse sound field. The measured acoustic contribution to the surface pressure fluctuations is 5% of the measured aerodynamic surface pressure fluctuations for a velocity and boundary layer thickness relevant for automotive interior noise applications. This shows that for aerodynamically induced car interior noise, both contributions to the surface pressure fluctuations on car windows have to be taken into account.  相似文献   

9.
A comparative wind tunnel test of various Pressure Sensitive Paint (PSP) formulations has been performed at the Institute for Aerospace Research (IAR) 1.5 m×1.5 m Trisonic Blowdown Wind Tunnel. The model under study is a prototype supercritical wing of a half model. The results are presented at the cruise Mach number:M=0.74. The effect of the Reynolds number on the pressure distribution is assessed by varying the stagnation pressure of the flow. The evaluated paints all use the same porphyrin molecule as the luminescent sensor and the differences in sensitivity to pressure and temperature are a result of the PSP binder, which differs for each formulation. Examples of the processed results are given and the accuracy of the different PSP formulations is also discussed.  相似文献   

10.
The dynamics of elasto-inertial turbulence is investigated numerically from the perspective of the coupling between polymer dynamics and flow structures. In particular, direct numerical simulations of channel flow with Reynolds numbers ranging from 1000 to 6000 are used to study the formation and dynamics of elastic instabilities and their effects on the flow. Based on the splitting of the pressure into inertial and polymeric contributions, it is shown that the polymeric pressure is a non-negligible component of the total pressure fluctuations, although the rapid inertial part dominates. Unlike Newtonian flows, the slow inertial part is almost negligible in elasto-inertial turbulence. Statistics on the different terms of the Reynolds stress transport equation also illustrate the energy transfers between polymers and turbulence and the redistributive role of pressure. Finally, the trains of cylindrical structures around sheets of high polymer extension that are characteristics of elasto-inertial turbulence are shown to be correlated with the polymeric pressure fluctuations.  相似文献   

11.
An immersed boundary method is proposed in the framework of discrete stream function formulation for incompressible flows. In order to impose the non-slip boundary condition, the forcing term is determined implicitly by solving a linear system. The number of unknowns of the linear system is the same as that of the Lagrangian points representing the body surface. Thus the extra cost in force calculation is negligible if compared with that in the basic flow solver. In order to handle three-dimensional flows at moderate Reynolds numbers, a parallelized flow solver based on the present method is developed using the domain decomposition strategy. To verify the accuracy of the immersed-boundary method proposed in this work, flow problems of different complexity (decaying vortices, flows over stationary and oscillating cylinders and a stationary sphere, and flow over low-aspect-ratio flat-plate) are simulated and the results are in good agreement with the experimental or computational data in previously published literatures.  相似文献   

12.
The wall pressure fluctuations in turbulent boundary layers play an important role in acoustic measurements carried out in moving media. Results of measuring the frequency spectra of wall pressure fluctuations around a surfacing device are presented. The spatial resolution achieved in measuring the wall pressure fluctuations is investigated. It is demonstrated that the results of hydrodynamic flow noise measurements strongly depend on the aperture size of the measuring acoustic transducer and its orientation in the turbulent boundary layer. The pseudosound pressure fluctuation spectra observed in a series of experiments with surfacing devices show that the resolution of the pressure receivers operating in the turbulent boundary layers considerably varies. On the basis of systematic measurements of wall pressure fluctuations by miniature and distributed receivers at high Reynolds numbers, the effect of the geometric dimensions of a pressure receiver on its resolution in the flow noise measurements is studied. An experimental method is proposed for estimating the receiver-induced distortions.  相似文献   

13.
The generation of noise in subsonic high Reynolds number single and coaxial turbulent jets is analyzed by a hybrid method. The computational approach is based on large-eddy simulations (LES) and solutions of the acoustic perturbation equations (APE). The method is used to investigate the acoustic fields of one isothermal single stream jet at a Mach number 0.9 and a Reynolds number 400,000 based on the nozzle diameter and two coaxial jets whose Mach number and Reynolds number based on the secondary jet match the values of the single jet. One coaxial jet configuration possesses a cold primary flow, whereas the other configuration has a hot primary jet. Thus, the configurations allow in a first step the analysis of the relationship of the flow and acoustic fields of a single and a cold coaxial jet and in a second step the investigation of the differences of the fluid mechanics and aeroacoustics of cold and hot coaxial jets. For the isothermal single jet the present hybrid acoustic computation shows convincing agreement with the direct acoustic simulation based on large-eddy simulations. The analysis of the acoustic field of the coaxial jets focuses on two noise sources, the Lamb vector fluctuations and the entropy sources of the APE equations. The power spectral density (PSD) distributions evidence the Lamb vector fluctuations to represent the major acoustic sources of the isothermal jet. Especially the typical downstream and sideline acoustic generations occur on a cone-like surface being wrapped around the end of the potential core. Furthermore, when the coaxial jet possesses a hot primary jet, the acoustic core being characterized by the entropy source terms increases the low frequency acoustics by up to 5 dB, i.e., the sideline acoustics is enhanced by the pronounced temperature gradient.  相似文献   

14.
In applying Pressure-Sensitive Paint (PSP) to low-speed flow wind tunnel testing, it is important to minimize any measurement uncertainties. There are various error sources such as camera noise, misalignment of images due to model displacement and temperature distribution over the model. Among these factors, the effects of temperature distribution change during tests on pressure measurement accuracies were studied in the present paper. Pressure and temperature distributions over a simplified car model (1/10 scale Ahmed model) were measured using PSP and Temperature-Sensitive Paint (TSP). Sequential images were acquired at the same intervals over the entire test period, including for the conditions before and after the tunnel run. As a result, it was found that the measurement error caused by temperature distribution over the model could be reduced using a single-point temperature measurement. In addition, by measuring surface temperature distributions on the model using TSP, it was proved that the most accurate pressure measurement could be made by rationing the wind-off image acquired immediately after shutting down the tunnel to the wind-on image acquired immediately before shutting down the tunnel. Using the present measurement technique, complicated pressure fields over the Ahmed model were successfully visualized.  相似文献   

15.
刘东  蒋斌  刘明侯 《计算物理》2013,30(5):759-765
基于确定表面粗糙结构形状的PML模型模拟表面粗糙度对大高宽比小槽道内流动特性的影响,并与3-D模拟结果对比,结果较为一致.基于该模型对不同的流速和不同的粗糙度进行模拟,结果表明:表面粗糙度导致槽道内出现速度线性分布的流动底层.Re数相同时,单位长度压降与相对粗糙度成二次方关系.粗糙单元高度相同时,压降随Re线性增加.  相似文献   

16.
Passive noise control devices for jet flows, such as chevron nozzles, have been studied for a long time due to their large application in turbofan engines. The main purpose of their usage is the reduction of low-frequency noise generation and thus decreasing the noise perceived at the far field. This work is a numerical study of acoustic noise generated by jet flow operating at Mach number 0.9 and Reynolds number 1.38 × 106, considering two chevron nozzle geometries that differ from each other by the penetration angle into the flow. The main aim was to demonstrate that Reynolds averaged Navier Stokes (RANS)-based methods are reliable means to obtain acoustical noise predictions for the industry with a considerably low computational cost. In order to achieve this objective, computational fluid dynamics (CFD) RANS simulations were performed with a cubic k-ɛ model and the acoustic noise spectrum for different angles of radiation was obtained via the Lighthill ray-tracing (LRT) method. The numerical results for the acoustic and flow fields were seen to be in reasonable agreement with the experimental data, suggesting that this methodology can be used as a fast and useful option to predict acoustic noise of jet flows from chevron nozzles.  相似文献   

17.
Flow noise associated with separated flow of a flat plate with large attack angles was studied experimentally to obtain its acoustic characteristics and to understand its generation mechanism. The acoustic features show that the separated flow noise could be attributed to acoustic dipole sources associated with the wall-pressure fluctuations on the plate surface. The time derivative of the fluctuating wall-surface pressure is highly correlated with the associated acoustic pressure. The noise intensity source strength is proportional to the mean-square time derivative of the fluctuating surface pressure and its correlation area, being proportional to the sixth power of the oncoming flow velocity and distributed uniformly over the plate surfaces. The associated acoustic intensity is well predicted by these noise source strength distributions.  相似文献   

18.
The flow of drops suspended on an inclined surface, are studied by numerical simulations at finite Reynolds numbers. The flow is driven by the acceleration due to gravity, and there is no pressure gradient in the flow direction. The effect of the Reynolds number, the Capillary number and density ratio on the distribution of drops and the fluctuation energy across the channel are investigated. It is found that drops tend to stay away from the channel floor, which is consistent with the behavior observed in the granular flow regime. Drops that are less deformable will stay further away from the channel floor. Also, drops appear at a larger distance from the floor as the Reynolds number increases. Simulations at large density ratios show that results are more compatible with computer simulations of granular flows. The behavior observed here resembles more the granular flow regime when the restitution coefficient is low.  相似文献   

19.
We present in this paper numerical simulations of coupled radiative transfer and turbulent flows at high temperature and pressure, typical of multiphase flows encountered in aluminised solid propellant rocket engines. The radiating medium is constituted of gases and of liquid or solid particles of oxidised aluminum. The turbulent flow of the gaseous phase is treated by using a four equation, low Reynolds number, boundary-layer-type turbulence model. The distributions of concentrations, temperatures, and temperature fluctuation variances of particles are calculated from a Lagrangian approach and a turbulence dispersion model. Thermal and mechanical non-equilibrium between the gas and different classes of particles is allowed. A locally one dimensional, iteratively based, radiative transfer solver is developed to compute wall fluxes and radiative source terms. It is shown that the thermal boundary layer attenuates significantly the radiative fluxes coming from the outer regions. Particle radiation is found to be much more important than gas radiation. Turbulent dispersion of particles in the boundary layer induces a decrease of particle concentration in the region of maximum turbulent kinetic energy, and then, decreases the attenuation effect of wall fluxes due to the boundary layer. The effects of turbulent temperature fluctuations are found to be small in the problem under consideration.  相似文献   

20.
《Physics letters. A》1996,223(3):167-172
The influence of the flow helicity on kinematic fast dynamo action is considered. Three different flows are studied, possessing identical chaotic properties but very different distributions of helicity (maximal helicity, zero net helicity and zero helicity density). All three flows provide strong evidence of fast dynamo action, indicating that helicity is not a crucial feature of fast dynamo flows. Comparisons are made between the magnetic fields generated by the three flows and it is established how certain key quantities scale with the magnetic Reynolds number. In particular, it is shown that the relative magnetic helicity tends to zero as the magnetic Reynolds number tends to infinity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号