首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The transient response of sandwich beams, plates, and shells with viscoelastic layers under impulse loading is studied using the finite element method. The viscoelastic material behavior is represented by a complex modulus model. An efficient method using the fast Fourier transform is proposed. This method is based on the trigonometric representation of the input signals and the matrix of the transfer functions. The present approach makes it possible to preserve exactly the frequency dependence of the storage and loss moduli of viscoelastic materials. The logarithmic decrements are determined using the steady state vibrations of sandwich structures to characterize their damping properties. Test problems and numerical examples are given to demonstrate the validity and application of the approach suggested in this paper. Submitted to the 11th International Conference on Mechanics of Composite Materials (Riga, June 11–15, 2000). Published in Mekhanika Kompozitnykh Materialov, Vol. 36, No. 3, pp. 367–378, March–April, 2000.  相似文献   

2.
本文用直接力法在时域内推导了粘弹性Timoshenko梁的控制微分方程,它同时计及了材料的拉伸粘性和剪切粘性.为了测定标准线性固体的复模量和三参数,对有机玻璃(PMMA)和尼龙6(PCL)试件成功地应用了强迫振动梁技术.通过大量数值计算,对粘弹性Timoshenko梁的动力特性,特别是阻尼特性进行了分析.结果表明,材料粘性对结构的动力特性,尤其是对阻尼有较大影响。对于高粘性材料,其动力学性质用标准线性固体模型来描写是合适的.  相似文献   

3.
This paper presents an analytical and finite element study on nonlinear contact dynamics and controls. Nonlinear dynamic contacts between eccentrically supported masses and simply supported beams are studied. Passive control of the dynamic contacts using viscoelastic dampers is also proposed and evaluated. A nonlinear contact finite element is modeled by a set of nonlinear stiffness and damping polynomial functions; and a nonlinear viscoelastic finite element is modeled by a Standard Linear Model with frequency-dependent nonlinear stiffness and damping functions. Analyses show that the dynamic contact force increases as the initial gap increases. Application of viscoelastic dampers can effectively reduce contact loads and prevent dynamic contacts. A simple design equation is also proposed.  相似文献   

4.
被动约束层阻尼圆柱壳振动和阻尼分析的一种新矩阵方法   总被引:4,自引:0,他引:4  
基于线弹性薄壳理论和线粘弹性理论,考虑粘弹性层的剪切耗能作用和各层间的相互作用力,导出了被动约束层阻尼层合圆柱壳在谐激励作用下的一阶常微分矩阵控制方程.然后,借助作者提出的齐次扩容精细积分技术建立了一种新的矩阵方法,并利用该方法研究了层合圆柱壳的振动特性和阻尼特性.该方法与已提出的以位移及其导数作为状态向量的传统传递矩阵法的根本区别在于,控制方程中的状态向量中包含了层合壳的全部位移和整合内力变量,因此,可以方便地适用于各种位移和内力边界条件以及部分环状覆盖约束层阻尼圆柱壳的动态分析.数值算例与解析解和有限元解的结果比较有力说明了该方法的正确性和有效性.  相似文献   

5.
Maximum viscoelastic damping characteristics of sandwich structures are designed using finite element and informative planning methods. Two basic design problems were considered: addition of a damping coating to a given homogeneous structure and building a sandwich structure subjected to a given set of constraints. The methods of complex eigenvalues and direct calculation of the frequency characteristics were used. Numerical examples of optimizing sandwich beams are presented for both design problems.Translated from Mekhanika Kompozitnykh Materialov, Vol. 29, No. 5, pp. 653–656, September–October, 1993.  相似文献   

6.
Free damping spatial and axisymmetrical vibrations of short cylinders consisting of elastic and viscoelastic layers are considered. A numerical study is made of the dependence of natural frequencies and damping coefficients on the ratio of geometric cylinders.Translated from Dinamicheskie Sistemy, No. 5, pp. 55–58, 1986.  相似文献   

7.
For continuous vibrating systems, such as bars and beams, end-mounted in the environment, knowledge about the mass, damping and stiffness properties of the resonating environment is important for analyzing free and forced vibrations of such structural members which are also damped themselves. To finally get an identification of the clamping parameters, examinations of both vibrating structural members for various restraint conditions and dynamic interaction with viscoelastic halfspaces, etc., are required. As a first step, longitudinal bar vibrations are studied in detail. The method of separation of variables combined with the reformatted orthogonality relation, and numerical integration is applied for calculating the free and forced oscillations. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
The author examines the propagation of longitudinal and shear waves in viscoelastic orthotropic and isotropic layers. Relations are obtained for determining the elastic constants and the real and imaginary parts of the complex moduli and Poisson's ratios in orthotropic and isotropic layers from the propagation velocities and damping constants of longitudinal and shear vibrations.Mekhanika Polimerov, Vol. 3, No. 1, pp. 161–166, 1967  相似文献   

9.
The double-beam system with a viscoelastic layer is a classical mechanical model for many beam-type composite structures. However, few studies have been able to optimize the structure from the perspective of structural damping characteristics. To fully understand the damping characteristics of the viscoelastic double-beam system, an analysis method based on dynamic stiffness method and Wittrick-Williams algorithm is presented in this paper. Through numerical case studies, five typical parameters of the viscoelastic double-beam system are discussed to investigate their influence on the damping characteristic of the system. Finally, the conclusions are used to parametric analysis for a kind of double-sheathing cable systems. Results show that the damping coefficient of the connection layer have a significant effect on the damping characteristic of the double-sheathing cable system compared with other design parameters. The proposed methods and conclusions obtained in this paper are helpful to design and optimize the structural parameters of engineering structures, thus having certain application and promotional value.  相似文献   

10.
This article examines the propagation of viscoelastic (elastic) waves in a medium consisting of two layers of finite thickness. It is found that there is a mechanical effect manifest in the monotonic dependence of the damping factor on the parameters of the system. These dependences have distinct maxima and minima, thus making it possible to optimize the damping properties of systems by varying their geometric parameters.Translated from Dinamicheskie, Sistemy, No. 4, pp. 57–62, 1985.  相似文献   

11.
损伤粘弹性力学的广义变分原理及应用   总被引:3,自引:0,他引:3  
从粘弹性材料的Boltzmann迭加原理和带空洞材料的线弹性本构关系出发,提出了一种损伤粘弹性材料具有广义力场的本构模型.应用变积方法得到了以卷积形式表示的泛函,并建立了损伤粘弹性固体的广义变分原理和广义势能原理.把它们应用于带损伤的粘弹性Timoshenko梁,得到了Timoshenko梁的统一的运动微分方程、初始条件和边界条件. 这些广义变分原理为近似求解带损伤的粘弹性问题提供了一条途径.  相似文献   

12.
We consider the problem of active damping of forced resonance vibrations of viscoelastic shells of revolution with the help of piezoelectric sensors and actuators. Here, the interaction of electromechanical and thermal fields is taken into account. For modeling of vibrations, we use the Kirchhoff–Love hypotheses as well as hypotheses adequate to them and describing the distribution of temperature and electric field quantities. The shell temperature increases as a result of dissipative heating. For the active damping of vibrations, piezoelectric sensors and actuators are used. It is supposed that the electromechanical characteristics of materials depend on the temperature. The solution of this complex nonlinear problem has been obtained by the iterative method and finite element method. We have investigated the influence of temperature of dissipative heating on the efficiency of active damping of vibrations of a viscoelastic cylindrical panel with rigid restraint of its edges.  相似文献   

13.
Engineering systems, such as rolled steel beams, chain and belt drives and high-speed paper, can be modeled as axially translating beams. This article scrutinizes vibration and stability of an axially translating viscoelastic Timoshenko beam constrained by simple supports and subjected to axial pretension. The viscoelastic form of general rheological model is adopted to constitute the material of the beam. The partial differential equations governing transverse motion of the beam are derived from the extended form of Hamilton's principle. The non-transforming spectral element method (NTSEM) is applied to transform the governing equations into a set of ordinary differential equations. The formulation is similar to conventional FFT-based spectral element model except that Daubechies wavelet basis functions are used for temporal discretization. Influences of translating velocities, axial tensile force, viscoelastic parameter, shear deformation, beam model and boundary condition types are investigated on the underlying dynamic response and stability via the NTSEM and demonstrated via numerical simulations.  相似文献   

14.
In this paper, a linear viscoelastic system is considered where the viscoelastic force depends on the past history of motion via a convolution integral over an exponentially decaying kernel function. The free‐motion equation of this nonviscous system yields a nonlinear eigenvalue problem that has a certain number of real eigenvalues corresponding to the nonoscillatory nature. The quality of the current numerical methods for deriving those eigenvalues is directly related to damping properties of the viscoelastic system. The main contribution of this paper is to explore the structure of the set of nonviscous eigenvalues of the system while the damping coefficient matrices are rank deficient and the damping level is changing. This problem will be investigated in the cases of low and high levels of damping, and a theorem that summarizes the possible distribution of real eigenvalues will be proved. Moreover, upper and lower bounds are provided for some of the eigenvalues regarding the damping properties of the system. Some physically realistic examples are provided, which give us insight into the behavior of the real eigenvalues while the damping level is changing.  相似文献   

15.
The subharmonic bifurcations and chaotic motions of the nonlinear viscoelastic plates subjected to subsonic flow and external loads are studied by means of Melnikov method. The critical conditions for the occurrence of chaotic motions are obtained. The chaotic features on the system parameters are discussed in detail. The conditions for subharmonic bifurcations are also obtained. For the system with no structural damping, chaotic motions can occur through infinite subharmonic bifurcations of odd orders. Furthermore, we confirm our theoretical predictions by numerical simulations. The theoretical results obtained here can help us to eliminate or suppress large nonlinear vibrations and chaotic motions of the nonlinear viscoelastic plates. Based on Melnikov method, complex dynamical behaviors of the nonlinear viscoelastic plates can be controlled by modifying the system parameters.  相似文献   

16.
Composite materials have been used in the design of the aircrafts structures because their low weight and high mechanical strength. However, structures made in composite material are exposed to dynamical and/or static loading environments. Therefore, a major research effort is undertaken in the development of tools numerical for analysis and design of composite structures. This paper presents a numerical formulation of the composite structures using the Finite Element Method (FEM). The damped composite structures, using inserted viscoelastic devices, and undamped composite structures are formulated by FEM. Viscoelastic materials are applied as continuous layers inserted on composite structures. The intrinsic damping of the composite material is included in the studies, too. The First‐order (FSDT) and Higher‐order Shear Deformation (HSDT) theories are formulated. They are distinguished by order of the approximation functions used in the mechanical displacements field. Both theories are computationally implemented using the Serendipity finite element. This is a rectangular finite element with 8 nodes, 5 or 11 degrees of freedom per node. The results are compared with papers predictions. The advantages and disadvantages of using each theory in the modeling of composite (thin or thick) and thick sandwiches structures, including the intrinsic and the viscoelastic damping, are discusses.  相似文献   

17.
A three-dimensional unilateral contact problem for thin viscoelastic layers bonded to rigid substrates shaped like elliptic paraboloids is considered. Two cases are studied: (a) Poisson’s ratios of the layer materials are not very close to 0.5 and (b) the layer materials are incompressible with Poisson’s ratio of 0.5. Poisson’s ratios are assumed to be time independent. In the present paper we derive the general solutions to the problems of elliptical contact between thin compressible or incompressible layers of arbitrary viscoelastic materials. The approach is based on the analytical method developed by the authors for the elliptical contact of thin biphasic cartilage layers. The obtained analytical solution is valid for monotonically increasing loading conditions.  相似文献   

18.
This paper considers the asymptotic behavior of solutions to the system of onedimensional viscoelastic model with damping and prove that the corresponding solutions time-asymptotically behave like nonlinear diffusion wave as in [4,11]. In addition, It is also shown that the system of one-dimensional viscoelastic model with damping is a viscosity approximation of a hyperbolic conservation laws with damping.  相似文献   

19.
分数积分的一种数值计算方法及其应用   总被引:5,自引:0,他引:5  
提出了一种只需要存储部分历史数据的分数积分的数值计算方法,并给出了误差估计。这种方法可对包含分数积分和分数导数的积分-微分方程进行较长时间的数值计算,克服了存储全部历史数据的困难,并能对计算误差进行控制。作为应用,给出了具有分数导数型本构关系的粘弹性Timoshenko梁的动力学行为研究的控制方程,利用分离变量法讨论梁在简谐激励作用下的动力响应,然后用新提出的数值方法对控制方程进行数值计算,数值计算结果和理论结果进行了比较,它们比较吻合。  相似文献   

20.
变速度轴向运动粘弹性梁的动态稳定性   总被引:6,自引:0,他引:6  
研究速度变化的轴向运动粘弹性梁在亚谐波共振及组合共振范围内的参数振动.通过平均法,在运动参数激励频率为2倍固有频率或为两阶固有频率之和附近时得到了自治的常微分方程组.在参数激励频率和激励振幅平面上,可以找到由于共振而产生的失稳区域,并应用数值方法验证了理论推导结果的正确性.分析了粘弹性阻尼,速度和预紧张力对失稳区域的影响.粘弹性阻尼使得共振失稳区域减小,而速度和预紧张力使共振失稳区域在频率-振幅平面上发生漂移.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号