首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present the first demonstration of a new mechanism for temporal compression of ultrashort light pulses that operates at high (i.e., ionizing) intensities. By propagating pulses inside a hollow waveguide filled with low-pressure argon gas, we demonstrate a self-compression from 30 to 13 fs, without the need for any external dispersion compensation. Theoretical models show that 3D spatiotemporal reshaping of the pulse due to a combination of ionization-induced spectral broadening, plasma-induced refraction, and guiding in the hollow waveguide are necessary to explain the compression mechanism.  相似文献   

2.
We show theoretically how high-order stimulated Raman scattering in the impulsive pump-probe regime can be used for generation of single mid-infrared (MIR) single-cycle pulses. The propagation of MIR probe pulses in a hollow waveguide filled with a Raman-excited gaseous medium, with a probe delay in the maximum of the molecular oscillations, results in spectral broadening covering almost 2 octaves. The spectral phases of this broadening can be compensated for by use of an output glass window with anomalous dispersion in the MIR. The spectral and temporal characteristics of the output pulses and the mechanism of pulse compression are studied by use of numerical and analytical solutions, and compression of a 70-fs input pulse at 4 microm to a single-cycle 6.5-fs output pulse is shown.  相似文献   

3.
Ionization-assisted spectral broadening of high-energy 10.6 μm laser pulses in a gas-filled hollow waveguide is shown to yield single-cycle pulses with multiterawatt peak powers in the mid-IR. While the highest quality of pulse compression is achieved in the regime of weak ionization, careful management of complex ionization-assisted spectral broadening of guided-wave fields is the key to compressing the output of advanced high-power mid-IR laser sources to single-cycle pulse widths.  相似文献   

4.
A method of formation of the tightly confined, distortion-free, femtosecond pulses in two dimensions (2D) with the step-like decreasing of intensity after a finite length of propagation in free space is described. The pulses are formed by the Fresnel source of modes corresponding to a 2D hollow waveguide with perfectly reflecting walls (material waveguide). The source reproduces in free space a propagation-invariant pulse confined by the waveguide. Unlike the case of material waveguides, when the pulse goes out from the virtual waveguide formed by the Fresnel source its shape does not change, but the intensity immediately drops down to the near-zero level. It is also shown that there is a limit of the duration of pulse beyond which the step-like decay is not observed.  相似文献   

5.
Tempea G  Brabec T 《Optics letters》1998,23(16):1286-1288
We investigate the evolution of optical pulses in a hollow waveguide filled with noble gas at pulse intensities for which tunnel ionization dominates the nonlinear response of the gas. A numerical analysis reveals that the spectral chirp generated by the plasma nonlinearity is to a good approximation linear over the whole pulse spectrum and can be compensated in a dispersive delay line. Our calculations predict the generation of 3-4-fs optical pulses with energies of a few milijoules. To our knowledge, these energies are an order of magnitude greater than the pulse energies that have been realized to date in hollow-fiber compressors based exclusively on the nonlinear Kerr effect.  相似文献   

6.
We report experimental evidence of waveguide self-compression for high-power Cr: forsterite-laser femtosecond pulses in a hollow photonic-crystal fiber. Dispersion spreading typical of low-intensity laser pulses is replaced by nonuniform compression for pulses with high power (above 100 MW) with the compression efficiency reaching its maximum around the peak of the laser pulse.  相似文献   

7.
《Comptes Rendus Physique》2009,10(10):957-963
We present a theoretical and numerical analysis of pulse propagation in a semiconductor photonic crystal waveguide with embedded quantum dots in a regime where the pulse is subjected to both waveguide and material dispersion. The group index and the transmission are investigated by finite-difference-time-domain Maxwell–Bloch simulations and compared to analytic results. For long pulses the group index (transmission) for the combined system is significantly enhanced (reduced) relative to slow light based on purely material or waveguide dispersion. Shorter pulses are strongly distorted and depending on parameters broadening or break-up of the pulse may be observed. The transition from linear to nonlinear pulse propagation is quantified in terms of the spectral width of the pulse. To cite this article: T.R. Nielsen et al., C. R. Physique 10 (2009).  相似文献   

8.
Frequency-doubled pulses from a sub-40-fs, 1-kHz Ti:sapphire amplifier system are spectrally broadened in an argon-filled hollow waveguide. Compression of the self-phase-modulated pulses is implemented with chirped mirrors and a prism pair, yielding 8-fs, 15-muJ pulses in the violet spectral range.  相似文献   

9.
We report the routine generation of sub-5-fs laser pulses with 1-mJ energy and stable carrier–envelope phase at 1-kHz repetition rate, obtained by compressing the multi-mJ output from a phase-locked Ti:sapphire amplifier in a rare-gas-filled hollow fiber. The dual-stage amplifier features a hybrid transmission grating/chirped mirror compressor providing 2.2-mJ, 26-fs pulses at 1 kHz with standard phase deviation of 190 mrad rms. We demonstrate hour-long phase stability without feedback control of grating position or rigorous control of the laser environment, simply by using small pulse stretching factors in the amplifier, which minimize the beam pathway in the compressor. The amplifier also integrates a versatile AOPDF (acousto-optic programmable dispersive filter) for closed-loop spectral phase optimization. The various factors influencing the overall phase stability of the system are discussed in detail. Using the optimized output, 1-mJ, 4.5-fs pulses are generated by seeding the neon gas filled hollow fiber with a circularly polarized input beam. A standard phase deviation of 230 mrad after the HCF is obtained by direct f-to-2f detection and slow-loop feedback to the oscillator locking electronics without any additional spectral broadening.  相似文献   

10.
Hirooka T  Nakazawa M  Okamoto K 《Optics letters》2008,33(10):1102-1104
We demonstrate parabolic optical pulse generation by manipulating the intensity and phase of individual longitudinal modes of a 40 GHz picosecond optical pulse train in the spectral domain. Bright and dark parabolic pulses were generated from a 40 GHz mode-locked fiber laser using a 64-channel arrayed waveguide grating pulse shaper. The obtained parabolic pulse, which can easily generate a linear chirping, is useful for a number of applications to optical signal processing applications, including pulse compression and time-domain optical Fourier transformation.  相似文献   

11.
We demonstrate a new technique for femtosecond-pulse generation that employs ultrafast modulation of a laser field phase by impulsively excited molecular rotational or vibrational motion with subsequent temporal compression. An ultrashort pump pulse at 800 nm performs impulsive excitation of a molecular gas in a hollow waveguide, and a weak delayed probe pulse at 400 nm is scattered on the temporal oscillations of its dielectric index. The resultant sinusoidal phase modulation of the probe pulse permits probe pulse temporal compression by use of both positively and negatively dispersive elements. The potential of this new method is demonstrated by the generation of a periodic train of 5.8-fs pulses at 400 nm with positive group-delay dispersion compensation.  相似文献   

12.
We compensated for chirp of optical pulses with an over-one-octave bandwidth (495-1090 nm; center wavelength of 655.4 nm) produced by self-phase modulation in a single argon-filled hollow fiber and generated 3.4-fs, 1.56 optical-cycle pulses (500 nJ, 1-kHz repetition rate). This was achieved with a feedback system combined with only one 4-f phase compensator with a spatial light modulator and a significantly improved phase characterizer based on modified spectral phase interferometry for direct electric-field reconstruction. To the best of our knowledge, this is the shortest pulse in the visible-to-infrared region.  相似文献   

13.
A vacuum-cored hollow waveguide has been found to transmit 1064-nm, Q-switched Nd:YAG laser pulses. With this scheme, laser-induced air breakdown was completely suppressed, and the laser-induced damage threshold of the waveguide's inner coating was significantly increased. With a 1-m-long, 1-mm inner-diameter, cyclic olefin polymer-coated silver hollow waveguide, the maximum transmitted laser energy was as great as 158 mJ/pulse (20.1 J/cm(2)), at a repetition rate of 10 Hz in a 90 degrees -bent waveguide condition. The corresponding transmitted peak laser power was 17.6 MW. With the transmitted laser pulses, deep ablation of myocardium tissues was demonstrated in vitro.  相似文献   

14.
Pulses with durations below 4 fs have been generated using the method of ultrafast molecular phase modulation. A laser pulse shorter than the molecular vibrational or rotational period obtains spectral broadening during propagation along a hollow waveguide filled with previously impulsively excited Raman active gases. The induced time dependent phase, frequency, and frequency chirp are controllable by changing the delay between excitation and probe pulse within the molecular vibrational period.  相似文献   

15.
The dependence of the rms spectral width of a light pulse consisting of several light-field oscillations on the distance passed in an optical waveguide with arbitrary dispersion and nonresonant electronic nonlinearity has been derived. This dependence allows one to rapidly predict the scenarios of the initial evolution of the spectrum (broadening, distance independence, or compression) by using the input pulse parameters and waveguide characteristics. It is shown that the pulse spectral width increases when the enrichment of the spectrum due to the generation of multiple harmonics is taken into account. In this case, for pulses with the spectrum in the region of the anomalous group dispersion of the waveguide, there is the intensity range for which the self-narrowing of the main spectral peak around the central radiation frequency is characteristic.  相似文献   

16.
Homoelle D  Gaeta AL 《Optics letters》2000,25(10):761-763
We present a theoretical investigation of the self-focusing dynamics of femtosecond pulses in a hollow waveguide. We show that transverse effects play an important role in these dynamics, even for pulses that are significantly below the critical power for self-focusing in free space, and that excitation of higher-order modes of the waveguide results in the spreading of the pulse in time. Inclusion of self-steepening and space-time focusing in our model is necessary for properly capturing the pulse dynamics.  相似文献   

17.
We have analyzed the induced phase modulation (IPM) for ultrashort (74 fs) two-pulse propagation in a silica fiber by the extended finite-difference time-domain (FDTD) method, considering all exact Sellmeier-fitting values and nonlinear polarization PNL involving the Raman response function. We show that nonlinear polarization causes several phenomena in spectral characteristics of propagated pulses, such as self-phase modulation (SPM), self-steepening, Raman response and IPM, by the extended FDTD method. To the best of our knowledge, this is the first IPM calculation by the extended FDTD method for the simultaneous propagation of two ultrashort (74 fs) laser pulses in a silica fiber.  相似文献   

18.
We report on the fabrication of hollow optical waveguides in fused silica using femtosecond laser micromachining. We show that in such hollow waveguides, high-intensity femtosecond laser beams can be guided with low optical loss. Our technique, which was established earlier for fabrication of optofluidic structures in glass, can ensure a high smoothness at the inner surfaces of the hollow waveguides and provide the unique capability of fabrication of hollow waveguides with complex geometries and configurations. A transmission of ∼90% at 633 nm wavelength is obtained for a 62-mm-long hollow waveguide with an inner diameter of ∼250 μm. In addition, nonlinear propagation of femtosecond laser pulses in the hollow waveguide is demonstrated, showing that the spectral bandwidth of the femtosecond pulses can be broadened from ∼27.2 to ∼55.7 nm.  相似文献   

19.
We demonstrate spectral phase interferometry for direct electric-field reconstruction (SPIDER) as a novel method to characterize sub-6-fs pulses with nanojoule pulse energy. SPIDER reconstructs pulse phase and amplitude from a measurement of only two optical spectra by use of a fast noniterative algorithm. SPIDER is well suited to the measurement of ultrabroadband pulses because it is quite insensitive to crystal phase-matching bandwidth and to unknown detector spectral responsivity. Moreover, it combines highly accurate pulse-shape measurement with the potential for online laser system diagnostics at video refresh rates.  相似文献   

20.
Nagy T  Pervak V  Simon P 《Optics letters》2011,36(22):4422-4424
The spectral broadening performance of 1 m and 3 m long hollow fibers are compared. The 3 m capillary clearly outperforms the 1 m one in terms of both transmission and achievable spectral broadening. Starting from 1.1 mJ 71 fs pulses at 780 nm, a spectral broadening ratio of 26 was achieved using a single 3 m long argon-filled hollow fiber. After compression the measured pulse duration was 4.5 fs corresponding to a compression ratio of 16 at an energy of 0.42 mJ. Both the pulse duration and the pulse energy were limited by the applied chirped mirrors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号